Documentation

Mathlib.Algebra.Order.WithTop.Untop0

Conversion from WithTop to Base Type #

For types α that are instances of Zero, we provide a convenient conversion, WithTop.untop₀, that maps elements a : WithTop α to α, by mapping to zero.

For settings where α has additional structure, we provide a large number of simplifier lemmas, akin to those that already exists for ENat.toNat.

def WithTop.untop₀ {α : Type u_1} [Zero α] (a : WithTop α) :
α

Conversion from WithTop α to α, mapping to zero.

Equations
Instances For

    Simplifying Lemmas in cases where α is an Instance of Zero #

    @[simp]
    theorem WithTop.untop₀_eq_zero {α : Type u_1} [Zero α] {a : WithTop α} :
    a.untop₀ = 0 a = 0 a =
    @[simp]
    theorem WithTop.untop₀_top {α : Type u_1} [Zero α] :
    @[simp]
    theorem WithTop.untop₀_zero {α : Type u_1} [Zero α] :
    @[simp]
    theorem WithTop.untop₀_coe {α : Type u_1} [Zero α] (a : α) :
    (↑a).untop₀ = a

    Simplifying Lemmas in cases where α is an AddMonoid #

    @[simp]
    theorem WithTop.untopD_add {α : Type u_1} [AddMonoid α] {a b : WithTop α} {c : α} (ha : a ) (hb : b ) :
    untopD c (a + b) = untopD c a + untopD c b
    @[simp]
    theorem WithTop.untop₀_add {α : Type u_1} [AddMonoid α] {a b : WithTop α} (ha : a ) (hb : b ) :

    Simplifying Lemmas in cases where α is a MulZeroClass #

    @[simp]
    theorem WithTop.untop₀_mul {α : Type u_1} [DecidableEq α] [MulZeroClass α] (a b : WithTop α) :

    Simplifying Lemmas in cases where α is a LinearOrderedAddCommGroup #

    @[simp]