Documentation

Mathlib.Algebra.QuaternionBasis

Basis on a quaternion-like algebra #

Main definitions #

structure QuaternionAlgebra.Basis {R : Type u_1} (A : Type u_2) [CommRing R] [Ring A] [Algebra R A] (c₁ c₂ : R) :
Type u_2

A quaternion basis contains the information both sufficient and necessary to construct an R-algebra homomorphism from ℍ[R,c₁,c₂] to A; or equivalently, a surjective R-algebra homomorphism from ℍ[R,c₁,c₂] to an R-subalgebra of A.

Note that for definitional convenience, k is provided as a field even though i_mul_j fully determines it.

  • i : A
  • j : A
  • k : A
  • i_mul_i : self.i * self.i = c₁ 1
  • j_mul_j : self.j * self.j = c₂ 1
  • i_mul_j : self.i * self.j = self.k
  • j_mul_i : self.j * self.i = -self.k
Instances For
    theorem QuaternionAlgebra.Basis.ext {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} ⦃q₁ q₂ : QuaternionAlgebra.Basis A c₁ c₂ (hi : q₁.i = q₂.i) (hj : q₁.j = q₂.j) :
    q₁ = q₂

    Since k is redundant, it is not necessary to show q₁.k = q₂.k when showing q₁ = q₂.

    def QuaternionAlgebra.Basis.self (R : Type u_1) [CommRing R] {c₁ c₂ : R} :

    There is a natural quaternionic basis for the QuaternionAlgebra.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      @[simp]
      theorem QuaternionAlgebra.Basis.self_j (R : Type u_1) [CommRing R] {c₁ c₂ : R} :
      (QuaternionAlgebra.Basis.self R).j = { re := 0, imI := 0, imJ := 1, imK := 0 }
      @[simp]
      theorem QuaternionAlgebra.Basis.self_i (R : Type u_1) [CommRing R] {c₁ c₂ : R} :
      (QuaternionAlgebra.Basis.self R).i = { re := 0, imI := 1, imJ := 0, imK := 0 }
      @[simp]
      theorem QuaternionAlgebra.Basis.self_k (R : Type u_1) [CommRing R] {c₁ c₂ : R} :
      (QuaternionAlgebra.Basis.self R).k = { re := 0, imI := 0, imJ := 0, imK := 1 }
      instance QuaternionAlgebra.Basis.instInhabited {R : Type u_1} [CommRing R] {c₁ c₂ : R} :
      Equations
      @[simp]
      theorem QuaternionAlgebra.Basis.i_mul_k {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
      q.i * q.k = c₁ q.j
      @[simp]
      theorem QuaternionAlgebra.Basis.k_mul_i {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
      q.k * q.i = -c₁ q.j
      @[simp]
      theorem QuaternionAlgebra.Basis.k_mul_j {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
      q.k * q.j = c₂ q.i
      @[simp]
      theorem QuaternionAlgebra.Basis.j_mul_k {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
      q.j * q.k = -c₂ q.i
      @[simp]
      theorem QuaternionAlgebra.Basis.k_mul_k {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
      q.k * q.k = -((c₁ * c₂) 1)
      def QuaternionAlgebra.Basis.lift {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (x : QuaternionAlgebra R c₁ c₂) :
      A

      Intermediate result used to define QuaternionAlgebra.Basis.liftHom.

      Equations
      Instances For
        theorem QuaternionAlgebra.Basis.lift_zero {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
        q.lift 0 = 0
        theorem QuaternionAlgebra.Basis.lift_one {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
        q.lift 1 = 1
        theorem QuaternionAlgebra.Basis.lift_add {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (x y : QuaternionAlgebra R c₁ c₂) :
        q.lift (x + y) = q.lift x + q.lift y
        theorem QuaternionAlgebra.Basis.lift_mul {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (x y : QuaternionAlgebra R c₁ c₂) :
        q.lift (x * y) = q.lift x * q.lift y
        theorem QuaternionAlgebra.Basis.lift_smul {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (r : R) (x : QuaternionAlgebra R c₁ c₂) :
        q.lift (r x) = r q.lift x
        def QuaternionAlgebra.Basis.liftHom {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :

        A QuaternionAlgebra.Basis implies an AlgHom from the quaternions.

        Equations
        • q.liftHom = AlgHom.mk' { toFun := q.lift, map_one' := , map_mul' := , map_zero' := , map_add' := }
        Instances For
          @[simp]
          theorem QuaternionAlgebra.Basis.liftHom_apply {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (a : QuaternionAlgebra R c₁ c₂) :
          q.liftHom a = q.lift a
          def QuaternionAlgebra.Basis.compHom {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (F : A →ₐ[R] B) :

          Transform a QuaternionAlgebra.Basis through an AlgHom.

          Equations
          • q.compHom F = { i := F q.i, j := F q.j, k := F q.k, i_mul_i := , j_mul_j := , i_mul_j := , j_mul_i := }
          Instances For
            @[simp]
            theorem QuaternionAlgebra.Basis.compHom_i {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (F : A →ₐ[R] B) :
            (q.compHom F).i = F q.i
            @[simp]
            theorem QuaternionAlgebra.Basis.compHom_j {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (F : A →ₐ[R] B) :
            (q.compHom F).j = F q.j
            @[simp]
            theorem QuaternionAlgebra.Basis.compHom_k {R : Type u_1} {A : Type u_2} {B : Type u_3} [CommRing R] [Ring A] [Ring B] [Algebra R A] [Algebra R B] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) (F : A →ₐ[R] B) :
            (q.compHom F).k = F q.k
            def QuaternionAlgebra.lift {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} :

            A quaternionic basis on A is equivalent to a map from the quaternion algebra to A.

            Equations
            • QuaternionAlgebra.lift = { toFun := QuaternionAlgebra.Basis.liftHom, invFun := (QuaternionAlgebra.Basis.self R).compHom, left_inv := , right_inv := }
            Instances For
              @[simp]
              theorem QuaternionAlgebra.lift_apply {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (q : QuaternionAlgebra.Basis A c₁ c₂) :
              QuaternionAlgebra.lift q = q.liftHom
              @[simp]
              theorem QuaternionAlgebra.lift_symm_apply {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} (F : QuaternionAlgebra R c₁ c₂ →ₐ[R] A) :
              QuaternionAlgebra.lift.symm F = (QuaternionAlgebra.Basis.self R).compHom F
              theorem QuaternionAlgebra.hom_ext {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] {c₁ c₂ : R} ⦃f g : QuaternionAlgebra R c₁ c₂ →ₐ[R] A (hi : f (QuaternionAlgebra.Basis.self R).i = g (QuaternionAlgebra.Basis.self R).i) (hj : f (QuaternionAlgebra.Basis.self R).j = g (QuaternionAlgebra.Basis.self R).j) :
              f = g

              Two R-algebra morphisms from a quaternion algebra are equal if they agree on i and j.

              theorem Quaternion.hom_ext {R : Type u_1} {A : Type u_2} [CommRing R] [Ring A] [Algebra R A] ⦃f g : Quaternion R →ₐ[R] A (hi : f (QuaternionAlgebra.Basis.self R).i = g (QuaternionAlgebra.Basis.self R).i) (hj : f (QuaternionAlgebra.Basis.self R).j = g (QuaternionAlgebra.Basis.self R).j) :
              f = g

              Two R-algebra morphisms from the quaternions are equal if they agree on i and j.