Documentation

Mathlib.Algebra.Ring.CharZero

Characteristic zero rings #

Nat.cast as an embedding into monoids of characteristic 0.

Equations
Instances For
    @[simp]
    theorem Nat.castEmbedding_apply {R : Type u_2} [AddMonoidWithOne R] [CharZero R] (a✝ : ) :
    castEmbedding a✝ = a✝
    theorem Function.support_natCast {α : Type u_1} {R : Type u_2} {n : } [AddMonoidWithOne R] [CharZero R] (hn : n 0) :
    theorem Function.mulSupport_natCast {α : Type u_1} {R : Type u_2} {n : } [AddMonoidWithOne R] [CharZero R] (hn : n 1) :
    theorem RingHom.charZero {R : Type u_2} {S : Type u_3} [NonAssocSemiring R] [NonAssocSemiring S] (ϕ : R →+* S) [CharZero S] :
    theorem RingHom.charZero_iff {R : Type u_2} {S : Type u_3} [NonAssocSemiring R] [NonAssocSemiring S] {ϕ : R →+* S} (hϕ : Function.Injective ϕ) :
    @[simp]
    theorem add_self_eq_zero {R : Type u_2} [NonAssocSemiring R] [NoZeroDivisors R] [CharZero R] {a : R} :
    a + a = 0 a = 0
    @[simp]
    theorem Nat.cast_pow_eq_one {R : Type u_2} {n : } [Semiring R] [CharZero R] {a : } (hn : n 0) :
    a ^ n = 1 a = 1
    theorem CharZero.neg_eq_self_iff {R : Type u_2} [NonAssocRing R] [NoZeroDivisors R] [CharZero R] {a : R} :
    -a = a a = 0
    theorem CharZero.eq_neg_self_iff {R : Type u_2} [NonAssocRing R] [NoZeroDivisors R] [CharZero R] {a : R} :
    a = -a a = 0
    theorem nat_mul_inj {R : Type u_2} [NonAssocRing R] [NoZeroDivisors R] [CharZero R] {n : } {a b : R} (h : n * a = n * b) :
    n = 0 a = b
    theorem nat_mul_inj' {R : Type u_2} [NonAssocRing R] [NoZeroDivisors R] [CharZero R] {n : } {a b : R} (h : n * a = n * b) (w : n 0) :
    a = b
    @[simp]
    theorem units_ne_neg_self {R : Type u_2} [Ring R] [CharZero R] (u : Rˣ) :
    u -u
    @[simp]
    theorem neg_units_ne_self {R : Type u_2} [Ring R] [CharZero R] (u : Rˣ) :
    -u u