Characteristic zero rings #
Nat.cast
as an embedding into monoids of characteristic 0
.
Equations
- Nat.castEmbedding = { toFun := Nat.cast, inj' := ⋯ }
Instances For
@[simp]
theorem
Function.mulSupport_natCast
{α : Type u_1}
{R : Type u_2}
{n : ℕ}
[AddMonoidWithOne R]
[CharZero R]
(hn : n ≠ 1)
:
theorem
RingHom.charZero
{R : Type u_2}
{S : Type u_3}
[NonAssocSemiring R]
[NonAssocSemiring S]
(ϕ : R →+* S)
[CharZero S]
:
CharZero R
theorem
RingHom.charZero_iff
{R : Type u_2}
{S : Type u_3}
[NonAssocSemiring R]
[NonAssocSemiring S]
{ϕ : R →+* S}
(hϕ : Function.Injective ⇑ϕ)
:
@[simp]
theorem
add_self_eq_zero
{R : Type u_2}
[NonAssocSemiring R]
[NoZeroDivisors R]
[CharZero R]
{a : R}
:
theorem
CharZero.neg_eq_self_iff
{R : Type u_2}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{a : R}
:
theorem
CharZero.eq_neg_self_iff
{R : Type u_2}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{a : R}
:
theorem
nat_mul_inj
{R : Type u_2}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{n : ℕ}
{a b : R}
(h : ↑n * a = ↑n * b)
:
theorem
nat_mul_inj'
{R : Type u_2}
[NonAssocRing R]
[NoZeroDivisors R]
[CharZero R]
{n : ℕ}
{a b : R}
(h : ↑n * a = ↑n * b)
(w : n ≠ 0)
: