Documentation

Mathlib.Algebra.Ring.Subring.IntPolynomial

Polynomials over subrings. #

Given a field K with a subring R, in this file we construct a map from polynomials in K[X] with coefficients in R to R[X]. We provide several lemmas to deal with coefficients, degree, and evaluation of Polynomial.int. This is useful when dealing with integral elements in an extension of fields.

Main Definitions #

def Polynomial.int {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : ∀ (n : ), P.coeff n R) :

Given a polynomial in K[X] such that all coefficients belong to the subring R, Polynomial.int is the corresponding polynomial in R[X].

Equations
  • Polynomial.int R P hP = { toFinsupp := { support := P.support, toFun := fun (n : ) => P.coeff n, , mem_support_toFun := } }
Instances For
    @[simp]
    theorem Polynomial.int_coeff_eq {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : ∀ (n : ), P.coeff n R) (n : ) :
    ((Polynomial.int R P hP).coeff n) = P.coeff n
    @[simp]
    theorem Polynomial.int_leadingCoeff_eq {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : ∀ (n : ), P.coeff n R) :
    (Polynomial.int R P hP).leadingCoeff = P.leadingCoeff
    @[simp]
    theorem Polynomial.int_monic_iff {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : ∀ (n : ), P.coeff n R) :
    (Polynomial.int R P hP).Monic P.Monic
    @[simp]
    theorem Polynomial.int_natDegree {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : ∀ (n : ), P.coeff n R) :
    (Polynomial.int R P hP).natDegree = P.natDegree
    @[simp]
    theorem Polynomial.int_eval₂_eq {K : Type u_1} [Field K] (R : Subring K) (P : Polynomial K) (hP : ∀ (n : ), P.coeff n R) {L : Type u_2} [Field L] [Algebra K L] (x : L) :