Polynomials over subrings. #
Given a field K
with a subring R
, in this file we construct a map from polynomials in K[X]
with coefficients in R
to R[X]
. We provide several lemmas to deal with
coefficients, degree, and evaluation of Polynomial.int
.
This is useful when dealing with integral elements in an extension of fields.
Main Definitions #
Polynomial.int
: given a polynomialP
inK[X]
whose coefficients all belong to a subringR
of the fieldK
,P.int R
is the corresponding polynomial inR[X]
.
def
Polynomial.int
{K : Type u_1}
[Field K]
(R : Subring K)
(P : Polynomial K)
(hP : ∀ (n : ℕ), P.coeff n ∈ R)
:
Polynomial ↥R
Given a polynomial in K[X]
such that all coefficients belong to the subring R
,
Polynomial.int
is the corresponding polynomial in R[X]
.
Equations
- Polynomial.int R P hP = { toFinsupp := { support := P.support, toFun := fun (n : ℕ) => ⟨P.coeff n, ⋯⟩, mem_support_toFun := ⋯ } }
Instances For
@[simp]
theorem
Polynomial.int_leadingCoeff_eq
{K : Type u_1}
[Field K]
(R : Subring K)
(P : Polynomial K)
(hP : ∀ (n : ℕ), P.coeff n ∈ R)
:
@[simp]
theorem
Polynomial.int_monic_iff
{K : Type u_1}
[Field K]
(R : Subring K)
(P : Polynomial K)
(hP : ∀ (n : ℕ), P.coeff n ∈ R)
:
@[simp]
theorem
Polynomial.int_natDegree
{K : Type u_1}
[Field K]
(R : Subring K)
(P : Polynomial K)
(hP : ∀ (n : ℕ), P.coeff n ∈ R)
: