Documentation

Mathlib.Algebra.SkewMonoidAlgebra.Support

Lemmas about the support of an element of a skew monoid algebra #

For f : SkewMonoidAlgebra k G, f.support is the set of all a ∈ G such that f.coeff a ≠ 0.

theorem SkewMonoidAlgebra.support_single_ne_zero {k : Type u_1} {G : Type u_2} [AddCommMonoid k] {b : k} (a : G) (h : b 0) :
theorem SkewMonoidAlgebra.support_single_subset {k : Type u_1} {G : Type u_2} [AddCommMonoid k] {a : G} {b : k} :
theorem SkewMonoidAlgebra.support_sum {k : Type u_1} {G : Type u_2} [AddCommMonoid k] {k' : Type u_3} {G' : Type u_4} [DecidableEq G'] [AddCommMonoid k'] {f : SkewMonoidAlgebra k G} {g : GkSkewMonoidAlgebra k' G'} :
(f.sum g).support f.support.biUnion fun (a : G) => (g a (f.coeff a)).support
@[simp]
theorem SkewMonoidAlgebra.support_one {k : Type u_1} {G : Type u_2} [One G] [AddCommMonoidWithOne k] [NeZero 1] :
theorem SkewMonoidAlgebra.support_single_mul_subset {k : Type u_1} {G : Type u_2} [Monoid G] [Semiring k] [MulSemiringAction G k] (f : SkewMonoidAlgebra k G) [DecidableEq G] (r : k) (a : G) :
(single a r * f).support Finset.image (fun (x : G) => a * x) f.support
theorem SkewMonoidAlgebra.support_mul_single_subset {k : Type u_1} {G : Type u_2} [Monoid G] [Semiring k] [MulSemiringAction G k] (f : SkewMonoidAlgebra k G) [DecidableEq G] (r : k) (a : G) :
(f * single a r).support Finset.image (fun (x : G) => x * a) f.support
theorem SkewMonoidAlgebra.support_single_mul_eq_image {k : Type u_1} {G : Type u_2} [Monoid G] [Semiring k] [MulSemiringAction G k] (f : SkewMonoidAlgebra k G) [DecidableEq G] {r : k} {x : G} (lx : IsLeftRegular x) (hrx : ∀ (y : k), r * x y = 0 y = 0) :
(single x r * f).support = Finset.image (fun (x_1 : G) => x * x_1) f.support
theorem SkewMonoidAlgebra.support_mul_single_eq_image {k : Type u_1} {G : Type u_2} [Monoid G] [Semiring k] [MulSemiringAction G k] (f : SkewMonoidAlgebra k G) [DecidableEq G] {r : k} {x : G} (rx : IsRightRegular x) (hrx : ∀ (g : G) (y : k), y * g r = 0 y = 0) :
(f * single x r).support = Finset.image (fun (x_1 : G) => x_1 * x) f.support
theorem SkewMonoidAlgebra.support_mul_single {k : Type u_1} {G : Type u_2} [Monoid G] [Semiring k] [MulSemiringAction G k] (f : SkewMonoidAlgebra k G) [DecidableEq G] [IsRightCancelMul G] (r : k) (x : G) (hrx : ∀ (g : G) (y : k), y * g r = 0 y = 0) :
theorem SkewMonoidAlgebra.support_single_mul {k : Type u_1} {G : Type u_2} [Monoid G] [Semiring k] [MulSemiringAction G k] (f : SkewMonoidAlgebra k G) [DecidableEq G] [IsLeftCancelMul G] (r : k) (x : G) (hrx : ∀ (y : k), r * x y = 0 y = 0) :
theorem SkewMonoidAlgebra.mem_span_support {k : Type u_1} {G : Type u_2} [Monoid G] [Semiring k] [MulSemiringAction G k] (f : SkewMonoidAlgebra k G) :
f Submodule.span k ((of k G) '' f.support)

An element of SkewMonoidAlgebra k G is in the subalgebra generated by its support.