Lemmas about the support of an element of a skew monoid algebra #
For f : SkewMonoidAlgebra k G
, f.support
is the set of all a ∈ G
such that f.coeff a ≠ 0
.
theorem
SkewMonoidAlgebra.support_single_subset
{k : Type u_1}
{G : Type u_2}
[AddCommMonoid k]
{a : G}
{b : k}
:
theorem
SkewMonoidAlgebra.support_sum
{k : Type u_1}
{G : Type u_2}
[AddCommMonoid k]
{k' : Type u_3}
{G' : Type u_4}
[DecidableEq G']
[AddCommMonoid k']
{f : SkewMonoidAlgebra k G}
{g : G → k → SkewMonoidAlgebra k' G'}
:
theorem
SkewMonoidAlgebra.support_neg
{k : Type u_1}
{G : Type u_2}
[AddCommGroup k]
(p : SkewMonoidAlgebra k G)
:
theorem
SkewMonoidAlgebra.support_one_subset
{k : Type u_1}
{G : Type u_2}
[One G]
[AddCommMonoidWithOne k]
:
@[simp]
theorem
SkewMonoidAlgebra.support_one
{k : Type u_1}
{G : Type u_2}
[One G]
[AddCommMonoidWithOne k]
[NeZero 1]
:
theorem
SkewMonoidAlgebra.support_mul
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f g : SkewMonoidAlgebra k G)
[DecidableEq G]
:
theorem
SkewMonoidAlgebra.support_single_mul_subset
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f : SkewMonoidAlgebra k G)
[DecidableEq G]
(r : k)
(a : G)
:
theorem
SkewMonoidAlgebra.support_mul_single_subset
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f : SkewMonoidAlgebra k G)
[DecidableEq G]
(r : k)
(a : G)
:
theorem
SkewMonoidAlgebra.support_single_mul_eq_image
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f : SkewMonoidAlgebra k G)
[DecidableEq G]
{r : k}
{x : G}
(lx : IsLeftRegular x)
(hrx : ∀ (y : k), r * x • y = 0 ↔ y = 0)
:
theorem
SkewMonoidAlgebra.support_mul_single_eq_image
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f : SkewMonoidAlgebra k G)
[DecidableEq G]
{r : k}
{x : G}
(rx : IsRightRegular x)
(hrx : ∀ (g : G) (y : k), y * g • r = 0 ↔ y = 0)
:
theorem
SkewMonoidAlgebra.support_mul_single
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f : SkewMonoidAlgebra k G)
[DecidableEq G]
[IsRightCancelMul G]
(r : k)
(x : G)
(hrx : ∀ (g : G) (y : k), y * g • r = 0 ↔ y = 0)
:
theorem
SkewMonoidAlgebra.support_single_mul
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f : SkewMonoidAlgebra k G)
[DecidableEq G]
[IsLeftCancelMul G]
(r : k)
(x : G)
(hrx : ∀ (y : k), r * x • y = 0 ↔ y = 0)
:
theorem
SkewMonoidAlgebra.mem_span_support
{k : Type u_1}
{G : Type u_2}
[Monoid G]
[Semiring k]
[MulSemiringAction G k]
(f : SkewMonoidAlgebra k G)
:
An element of SkewMonoidAlgebra k G
is in the subalgebra generated by its support.