Documentation

Mathlib.Algebra.Star.LinearMap

Intrinsic star operation on E →ₗ[R] F #

This file defines the star operation on linear maps: (star f) x = star (f (star x)). This corresponds to a map being star-preserving, i.e., a map is self-adjoint iff it is star-preserving.

Implementation notes #

Note that in the case of when E = F for a finite-dimensional Hilbert space, this star is mathematically distinct from the global instance on E →ₗ[𝕜] E where star := LinearMap.adjoint. For that reason, the intrinsic star operation is scoped to IntrinsicStar.

def LinearMap.intrinsicStar {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] :
Star (E →ₗ[R] F)

The intrinsic star operation on linear maps E →ₗ F defined by (star f) x = star (f (star x)).

Equations
Instances For
    @[simp]
    theorem LinearMap.intrinsicStar_apply {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] (f : E →ₗ[R] F) (x : E) :
    (star f) x = star (f (star x))

    The involutive intrinsic star structure on linear maps.

    Equations
    Instances For

      The intrinsic star additive monoid structure on linear maps.

      Equations
      Instances For
        theorem LinearMap.isSelfAdjoint_iff_map_star {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] (f : E →ₗ[R] F) :
        IsSelfAdjoint f ∀ (x : E), f (star x) = star (f x)
        @[simp]
        theorem StarHomClass.isSelfAdjoint {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] {S : Type u_4} [FunLike S E F] [LinearMapClass S R E F] [StarHomClass S E F] {f : S} :
        theorem LinearMap.intrinsicStar_comp {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] {G : Type u_4} [AddCommMonoid G] [Module R G] [StarAddMonoid G] [StarModule R G] (f : E →ₗ[R] F) (g : G →ₗ[R] E) :
        @[simp]
        @[simp]
        theorem LinearMap.intrinsicStar_zero {R : Type u_1} {E : Type u_2} {F : Type u_3} [Semiring R] [InvolutiveStar R] [AddCommMonoid E] [Module R E] [StarAddMonoid E] [StarModule R E] [AddCommMonoid F] [Module R F] [StarAddMonoid F] [StarModule R F] :
        star 0 = 0