Documentation

Mathlib.Algebra.Star.Unitary

Unitary elements of a star monoid #

This file defines unitary R, where R is a star monoid, as the submonoid made of the elements that satisfy star U * U = 1 and U * star U = 1, and these form a group. This includes, for instance, unitary operators on Hilbert spaces.

See also Matrix.UnitaryGroup for specializations to unitary (Matrix n n R).

Tags #

unitary

def unitary (R : Type u_1) [Monoid R] [StarMul R] :

In a *-monoid, unitary R is the submonoid consisting of all the elements U of R such that star U * U = 1 and U * star U = 1.

Equations
Instances For
    theorem Unitary.mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :
    U unitary R star U * U = 1 U * star U = 1
    @[simp]
    theorem Unitary.star_mul_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
    star U * U = 1
    @[simp]
    theorem Unitary.mul_star_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
    U * star U = 1
    theorem Unitary.star_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
    @[simp]
    theorem Unitary.star_mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :
    Equations
    @[simp]
    theorem Unitary.coe_star {R : Type u_1} [Monoid R] [StarMul R] {U : (unitary R)} :
    (star U) = star U
    theorem Unitary.coe_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
    star U * U = 1
    theorem Unitary.coe_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
    U * (star U) = 1
    @[simp]
    theorem Unitary.star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
    star U * U = 1
    @[simp]
    theorem Unitary.mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
    U * star U = 1
    Equations
    • One or more equations did not get rendered due to their size.
    theorem Unitary.star_eq_inv {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
    def Unitary.toUnits {R : Type u_1} [Monoid R] [StarMul R] :
    (unitary R) →* Rˣ

    The unitary elements embed into the units.

    Equations
    Instances For
      @[simp]
      theorem Unitary.val_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : (unitary R)) :
      (toUnits x) = x
      @[simp]
      theorem Unitary.val_inv_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : (unitary R)) :
      (toUnits x)⁻¹ = x⁻¹
      theorem IsUnit.mem_unitary_iff_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) :
      u unitary R star u * u = 1
      theorem IsUnit.mem_unitary_iff_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) :
      u unitary R u * star u = 1
      theorem IsUnit.mem_unitary_of_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) :
      star u * u = 1u unitary R

      Alias of the reverse direction of IsUnit.mem_unitary_iff_star_mul_self.

      theorem IsUnit.mem_unitary_of_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : IsUnit u) :
      u * star u = 1u unitary R

      Alias of the reverse direction of IsUnit.mem_unitary_iff_mul_star_self.

      theorem Unitary.mul_left_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : (unitary R)) :
      x * U = y * U x = y

      For unitary U in a star-monoid R, x * U = y * U if and only if x = y for all x and y in R.

      theorem Unitary.mul_right_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : (unitary R)) :
      U * x = U * y x = y

      For unitary U in a star-monoid R, U * x = U * y if and only if x = y for all x and y in R.

      theorem Unitary.mul_inv_mem_iff {G : Type u_2} [Group G] [StarMul G] (a b : G) :
      a * b⁻¹ unitary G star a * a = star b * b
      theorem Unitary.inv_mul_mem_iff {G : Type u_2} [Group G] [StarMul G] (a b : G) :
      a⁻¹ * b unitary G a * star a = b * star b
      theorem Units.mul_inv_mem_unitary {R : Type u_1} [Monoid R] [StarMul R] (a b : Rˣ) :
      a * b⁻¹ unitary R star a * a = star b * b

      In a star monoid, the product a * b⁻¹ of units is unitary if star a * a = star b * b.

      theorem Units.inv_mul_mem_unitary {R : Type u_1} [Monoid R] [StarMul R] (a b : Rˣ) :
      a⁻¹ * b unitary R a * star a = b * star b

      In a star monoid, the product a⁻¹ * b of units is unitary if a * star a = b * star b.

      instance Unitary.instIsStarNormal {R : Type u_1} [Monoid R] [StarMul R] (u : (unitary R)) :
      instance Unitary.coe_isStarNormal {R : Type u_1} [Monoid R] [StarMul R] (u : (unitary R)) :
      theorem isStarNormal_of_mem_unitary {R : Type u_1} [Monoid R] [StarMul R] {u : R} (hu : u unitary R) :
      theorem Unitary.inv_mem {G : Type u_2} [Group G] [StarMul G] {g : G} (hg : g unitary G) :
      def unitarySubgroup (G : Type u_2) [Group G] [StarMul G] :

      unitary as a Subgroup of a group.

      Note the group structure on this type is not defeq to the one on unitary. This situation naturally arises when considering the unitary elements as a subgroup of the group of units of a star monoid.

      Equations
      Instances For
        @[simp]
        theorem mem_unitarySubgroup_iff {G : Type u_2} [Group G] [StarMul G] {g : G} :
        theorem Unitary.inv_mem_iff {G : Type u_2} [Group G] [StarMul G] {g : G} :
        theorem Unitary.smul_mem_of_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] {r : R} {a : A} (hr : r unitary R) (ha : a unitary A) :
        theorem Unitary.smul_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : (unitary R)) {a : A} (ha : a unitary A) :
        instance Unitary.instSMulSubtypeMemSubmonoidUnitary {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] :
        SMul (unitary R) (unitary A)
        Equations
        @[simp]
        theorem Unitary.coe_smul {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : (unitary R)) (a : (unitary A)) :
        ↑(r a) = r a
        instance Unitary.instSMulCommClassSubtypeMemSubmonoidUnitary {R : Type u_1} {S : Type u_2} {A : Type u_3} [Monoid R] [Monoid S] [Monoid A] [StarMul R] [StarMul S] [StarMul A] [MulAction R A] [MulAction S A] [StarModule R A] [StarModule S A] [IsScalarTower R A A] [IsScalarTower S A A] [SMulCommClass R A A] [SMulCommClass S A A] [SMulCommClass R S A] :
        SMulCommClass (unitary R) (unitary S) (unitary A)
        instance Unitary.instIsScalarTowerSubtypeMemSubmonoidUnitary {R : Type u_1} {S : Type u_2} {A : Type u_3} [Monoid R] [Monoid S] [Monoid A] [StarMul R] [StarMul S] [StarMul A] [MulAction R S] [MulAction R A] [MulAction S A] [StarModule R S] [StarModule R A] [StarModule S A] [IsScalarTower R A A] [IsScalarTower S A A] [SMulCommClass R A A] [SMulCommClass S A A] [IsScalarTower R S S] [SMulCommClass R S S] [IsScalarTower R S A] :
        IsScalarTower (unitary R) (unitary S) (unitary A)
        theorem Unitary.map_mem {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {F : Type u_5} [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) {r : R} (hr : r unitary R) :
        f r unitary S
        def Unitary.map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R →⋆* S) :
        (unitary R) →⋆* (unitary S)

        The star monoid homomorphism between unitary subgroups induced by a star monoid homomorphism of the underlying star monoids.

        Equations
        Instances For
          @[simp]
          theorem Unitary.map_coe {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R →⋆* S) (a✝ : (unitary R)) :
          (map f) a✝ = Subtype.map f a✝
          @[simp]
          theorem Unitary.coe_map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R →⋆* S) (x : (unitary R)) :
          ((map f) x) = f x
          @[simp]
          theorem Unitary.coe_map_star {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R →⋆* S) (x : (unitary R)) :
          ((map f) (star x)) = f (star x)
          @[simp]
          theorem Unitary.map_comp {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (g : S →⋆* T) (f : R →⋆* S) :
          map (g.comp f) = (map g).comp (map f)
          @[simp]
          theorem Unitary.map_injective {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {f : R →⋆* S} (hf : Function.Injective f) :
          def Unitary.mapEquiv {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R ≃⋆* S) :
          (unitary R) ≃⋆* (unitary S)

          The star monoid isomorphism between unitary subgroups induced by a star monoid isomorphism of the underlying star monoids.

          Equations
          Instances For
            @[simp]
            theorem Unitary.mapEquiv_apply {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R ≃⋆* S) (a : (unitary R)) :
            @[simp]
            theorem Unitary.mapEquiv_symm_apply {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R ≃⋆* S) (a : (unitary S)) :
            @[simp]
            theorem Unitary.mapEquiv_symm {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R ≃⋆* S) :
            @[simp]
            theorem Unitary.mapEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (f : R ≃⋆* S) (g : S ≃⋆* T) :
            @[simp]

            The unitary subgroup of the units is equivalent to the unitary elements of the monoid.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              @[simp]
              theorem Unitary.mem_iff_star_mul_self {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :
              U unitary R star U * U = 1
              theorem Unitary.mem_iff_self_mul_star {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :
              U unitary R U * star U = 1
              theorem Unitary.coe_inv {R : Type u_1} [GroupWithZero R] [StarMul R] (U : (unitary R)) :
              U⁻¹ = (↑U)⁻¹
              theorem Unitary.coe_div {R : Type u_1} [GroupWithZero R] [StarMul R] (U₁ U₂ : (unitary R)) :
              ↑(U₁ / U₂) = U₁ / U₂
              theorem Unitary.coe_zpow {R : Type u_1} [GroupWithZero R] [StarMul R] (U : (unitary R)) (z : ) :
              ↑(U ^ z) = U ^ z
              Equations
              theorem Unitary.coe_neg {R : Type u_1} [Ring R] [StarRing R] (U : (unitary R)) :
              ↑(-U) = -U
              @[simp]
              theorem Unitary.spectrum_star_right_conjugate {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : (unitary A)} :
              spectrum R (U * a * star U) = spectrum R a

              Unitary conjugation preserves the spectrum, star on right.

              @[simp]
              theorem Unitary.spectrum_star_left_conjugate {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : (unitary A)} :
              spectrum R (star U * a * U) = spectrum R a

              Unitary conjugation preserves the spectrum, star on left.

              Deprecated results #

              @[deprecated Unitary.mem_iff (since := "2025-10-29")]
              theorem unitary.mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :
              U unitary R star U * U = 1 U * star U = 1

              Alias of Unitary.mem_iff.

              @[deprecated Unitary.star_mul_self_of_mem (since := "2025-10-29")]
              theorem unitary.star_mul_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
              star U * U = 1

              Alias of Unitary.star_mul_self_of_mem.

              @[deprecated Unitary.mul_star_self_of_mem (since := "2025-10-29")]
              theorem unitary.mul_star_self_of_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :
              U * star U = 1

              Alias of Unitary.mul_star_self_of_mem.

              @[deprecated Unitary.star_mem (since := "2025-10-29")]
              theorem unitary.star_mem {R : Type u_1} [Monoid R] [StarMul R] {U : R} (hU : U unitary R) :

              Alias of Unitary.star_mem.

              @[deprecated Unitary.star_mem_iff (since := "2025-10-29")]
              theorem unitary.star_mem_iff {R : Type u_1} [Monoid R] [StarMul R] {U : R} :

              Alias of Unitary.star_mem_iff.

              @[deprecated Unitary.coe_star (since := "2025-10-29")]
              theorem unitary.coe_star {R : Type u_1} [Monoid R] [StarMul R] {U : (unitary R)} :
              (star U) = star U

              Alias of Unitary.coe_star.

              @[deprecated Unitary.coe_star_mul_self (since := "2025-10-29")]
              theorem unitary.coe_star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
              star U * U = 1

              Alias of Unitary.coe_star_mul_self.

              @[deprecated Unitary.coe_mul_star_self (since := "2025-10-29")]
              theorem unitary.coe_mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
              U * (star U) = 1

              Alias of Unitary.coe_mul_star_self.

              @[deprecated Unitary.star_mul_self (since := "2025-10-29")]
              theorem unitary.star_mul_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
              star U * U = 1

              Alias of Unitary.star_mul_self.

              @[deprecated Unitary.mul_star_self (since := "2025-10-29")]
              theorem unitary.mul_star_self {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :
              U * star U = 1

              Alias of Unitary.mul_star_self.

              @[deprecated Unitary.star_eq_inv (since := "2025-10-29")]
              theorem unitary.star_eq_inv {R : Type u_1} [Monoid R] [StarMul R] (U : (unitary R)) :

              Alias of Unitary.star_eq_inv.

              @[deprecated Unitary.star_eq_inv' (since := "2025-10-29")]
              theorem unitary.star_eq_inv' {R : Type u_1} [Monoid R] [StarMul R] :

              Alias of Unitary.star_eq_inv'.

              @[deprecated Unitary.toUnits (since := "2025-10-29")]
              def unitary.toUnits {R : Type u_1} [Monoid R] [StarMul R] :
              (unitary R) →* Rˣ

              Alias of Unitary.toUnits.


              The unitary elements embed into the units.

              Equations
              Instances For
                @[deprecated Unitary.val_toUnits_apply (since := "2025-10-29")]
                theorem unitary.val_toUnits_apply {R : Type u_1} [Monoid R] [StarMul R] (x : (unitary R)) :
                (Unitary.toUnits x) = x

                Alias of Unitary.val_toUnits_apply.

                @[deprecated Unitary.toUnits_injective (since := "2025-10-29")]

                Alias of Unitary.toUnits_injective.

                @[deprecated Unitary.mul_left_inj (since := "2025-10-29")]
                theorem unitary.mul_left_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : (unitary R)) :
                x * U = y * U x = y

                Alias of Unitary.mul_left_inj.


                For unitary U in a star-monoid R, x * U = y * U if and only if x = y for all x and y in R.

                @[deprecated Unitary.mul_right_inj (since := "2025-10-29")]
                theorem unitary.mul_right_inj {R : Type u_1} [Monoid R] [StarMul R] {x y : R} (U : (unitary R)) :
                U * x = U * y x = y

                Alias of Unitary.mul_right_inj.


                For unitary U in a star-monoid R, U * x = U * y if and only if x = y for all x and y in R.

                @[deprecated Unitary.mul_inv_mem_iff (since := "2025-10-29")]
                theorem unitary.mul_inv_mem_iff {G : Type u_2} [Group G] [StarMul G] (a b : G) :
                a * b⁻¹ unitary G star a * a = star b * b

                Alias of Unitary.mul_inv_mem_iff.

                @[deprecated Unitary.inv_mul_mem_iff (since := "2025-10-29")]
                theorem unitary.inv_mul_mem_iff {G : Type u_2} [Group G] [StarMul G] (a b : G) :
                a⁻¹ * b unitary G a * star a = b * star b

                Alias of Unitary.inv_mul_mem_iff.

                @[deprecated Unitary.inv_mem (since := "2025-10-29")]
                theorem unitary.inv_mem {G : Type u_2} [Group G] [StarMul G] {g : G} (hg : g unitary G) :

                Alias of Unitary.inv_mem.

                @[deprecated Unitary.smul_mem_of_mem (since := "2025-10-29")]
                theorem unitary.smul_mem_of_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] {r : R} {a : A} (hr : r unitary R) (ha : a unitary A) :

                Alias of Unitary.smul_mem_of_mem.

                @[deprecated Unitary.smul_mem (since := "2025-10-29")]
                theorem unitary.smul_mem {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : (unitary R)) {a : A} (ha : a unitary A) :

                Alias of Unitary.smul_mem.

                @[deprecated Unitary.coe_smul (since := "2025-10-29")]
                theorem unitary.coe_smul {R : Type u_1} {A : Type u_2} [Monoid R] [Monoid A] [MulAction R A] [SMulCommClass R A A] [IsScalarTower R A A] [StarMul R] [StarMul A] [StarModule R A] (r : (unitary R)) (a : (unitary A)) :
                ↑(r a) = r a

                Alias of Unitary.coe_smul.

                @[deprecated Unitary.map_mem (since := "2025-10-29")]
                theorem unitary.map_mem {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {F : Type u_5} [FunLike F R S] [StarHomClass F R S] [MonoidHomClass F R S] (f : F) {r : R} (hr : r unitary R) :
                f r unitary S

                Alias of Unitary.map_mem.

                @[deprecated Unitary.map (since := "2025-10-29")]
                def unitary.map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R →⋆* S) :
                (unitary R) →⋆* (unitary S)

                Alias of Unitary.map.


                The star monoid homomorphism between unitary subgroups induced by a star monoid homomorphism of the underlying star monoids.

                Equations
                Instances For
                  @[deprecated Unitary.coe_map (since := "2025-10-29")]
                  theorem unitary.coe_map {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R →⋆* S) (x : (unitary R)) :
                  ((Unitary.map f) x) = f x

                  Alias of Unitary.coe_map.

                  @[deprecated Unitary.coe_map_star (since := "2025-10-29")]
                  theorem unitary.coe_map_star {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R →⋆* S) (x : (unitary R)) :
                  ((Unitary.map f) (star x)) = f (star x)

                  Alias of Unitary.coe_map_star.

                  @[deprecated Unitary.map_id (since := "2025-10-29")]

                  Alias of Unitary.map_id.

                  @[deprecated Unitary.map_comp (since := "2025-10-29")]
                  theorem unitary.map_comp {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (g : S →⋆* T) (f : R →⋆* S) :

                  Alias of Unitary.map_comp.

                  @[deprecated Unitary.map_injective (since := "2025-10-29")]
                  theorem unitary.map_injective {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] {f : R →⋆* S} (hf : Function.Injective f) :

                  Alias of Unitary.map_injective.

                  @[deprecated Unitary.toUnits_comp_map (since := "2025-10-29")]

                  Alias of Unitary.toUnits_comp_map.

                  @[deprecated Unitary.mapEquiv (since := "2025-10-29")]
                  def unitary.mapEquiv {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R ≃⋆* S) :
                  (unitary R) ≃⋆* (unitary S)

                  Alias of Unitary.mapEquiv.


                  The star monoid isomorphism between unitary subgroups induced by a star monoid isomorphism of the underlying star monoids.

                  Equations
                  Instances For
                    @[deprecated Unitary.mapEquiv_refl (since := "2025-10-29")]

                    Alias of Unitary.mapEquiv_refl.

                    @[deprecated Unitary.mapEquiv_symm (since := "2025-10-29")]
                    theorem unitary.mapEquiv_symm {R : Type u_2} {S : Type u_3} [Monoid R] [StarMul R] [Monoid S] [StarMul S] (f : R ≃⋆* S) :

                    Alias of Unitary.mapEquiv_symm.

                    @[deprecated Unitary.mapEquiv_trans (since := "2025-10-29")]
                    theorem unitary.mapEquiv_trans {R : Type u_2} {S : Type u_3} {T : Type u_4} [Monoid R] [StarMul R] [Monoid S] [StarMul S] [Monoid T] [StarMul T] (f : R ≃⋆* S) (g : S ≃⋆* T) :

                    Alias of Unitary.mapEquiv_trans.

                    @[deprecated Unitary.toMonoidHom_mapEquiv (since := "2025-10-29")]

                    Alias of Unitary.toMonoidHom_mapEquiv.

                    @[deprecated Unitary.mem_iff_star_mul_self (since := "2025-10-29")]
                    theorem unitary.mem_iff_star_mul_self {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :
                    U unitary R star U * U = 1

                    Alias of Unitary.mem_iff_star_mul_self.

                    @[deprecated Unitary.mem_iff_self_mul_star (since := "2025-10-29")]
                    theorem unitary.mem_iff_self_mul_star {R : Type u_1} [CommMonoid R] [StarMul R] {U : R} :
                    U unitary R U * star U = 1

                    Alias of Unitary.mem_iff_self_mul_star.

                    @[deprecated Unitary.coe_inv (since := "2025-10-29")]
                    theorem unitary.coe_inv {R : Type u_1} [GroupWithZero R] [StarMul R] (U : (unitary R)) :
                    U⁻¹ = (↑U)⁻¹

                    Alias of Unitary.coe_inv.

                    @[deprecated Unitary.coe_div (since := "2025-10-29")]
                    theorem unitary.coe_div {R : Type u_1} [GroupWithZero R] [StarMul R] (U₁ U₂ : (unitary R)) :
                    ↑(U₁ / U₂) = U₁ / U₂

                    Alias of Unitary.coe_div.

                    @[deprecated Unitary.coe_zpow (since := "2025-10-29")]
                    theorem unitary.coe_zpow {R : Type u_1} [GroupWithZero R] [StarMul R] (U : (unitary R)) (z : ) :
                    ↑(U ^ z) = U ^ z

                    Alias of Unitary.coe_zpow.

                    @[deprecated Unitary.coe_neg (since := "2025-10-29")]
                    theorem unitary.coe_neg {R : Type u_1} [Ring R] [StarRing R] (U : (unitary R)) :
                    ↑(-U) = -U

                    Alias of Unitary.coe_neg.

                    @[deprecated Unitary.spectrum_star_right_conjugate (since := "2025-10-20")]
                    theorem unitary.spectrum.unitary_conjugate {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : (unitary A)} :
                    spectrum R (U * a * star U) = spectrum R a

                    Alias of Unitary.spectrum_star_right_conjugate.


                    Unitary conjugation preserves the spectrum, star on right.

                    @[deprecated Unitary.spectrum_star_left_conjugate (since := "2025-10-20")]
                    theorem unitary.spectrum.unitary_conjugate' {R : Type u_2} {A : Type u_3} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A] {a : A} {U : (unitary A)} :
                    spectrum R (star U * a * U) = spectrum R a

                    Alias of Unitary.spectrum_star_left_conjugate.


                    Unitary conjugation preserves the spectrum, star on left.