Fundamental groupoid of punit #
The fundamental groupoid of punit is naturally isomorphic to CategoryTheory.Discrete PUnit
instance
FundamentalGroupoid.instSubsingletonHomPUnit
{x y : FundamentalGroupoid PUnit.{u_1 + 1}}
:
Subsingleton (x ⟶ y)
Equivalence of groupoids between fundamental groupoid of punit and punit
Equations
- One or more equations did not get rendered due to their size.
Instances For
@[simp]
theorem
FundamentalGroupoid.punitEquivDiscretePUnit_counitIso :
punitEquivDiscretePUnit.counitIso = CategoryTheory.Iso.refl
(((CategoryTheory.Functor.const (CategoryTheory.Discrete PUnit.{v + 1})).obj { as := PUnit.unit }).comp
(CategoryTheory.Functor.star (FundamentalGroupoid PUnit.{u + 1})))
@[simp]
theorem
FundamentalGroupoid.punitEquivDiscretePUnit_inverse :
punitEquivDiscretePUnit.inverse = (CategoryTheory.Functor.const (CategoryTheory.Discrete PUnit.{v + 1})).obj { as := PUnit.unit }
@[simp]