The nerve of a category #
This file provides the definition of the nerve of a category C
,
which is a simplicial set nerve C
(see [goerss-jardine-2009], Example I.1.4).
References #
- [Paul G. Goerss, John F. Jardine, Simplical Homotopy Theory][goerss-jardine-2009]
@[simp]
theorem
CategoryTheory.nerve_obj
(C : Type u)
[CategoryTheory.Category.{v, u} C]
(Δ : SimplexCategoryᵒᵖ)
:
(CategoryTheory.nerve C).obj Δ = CategoryTheory.Functor (↑(SimplexCategory.toCat.obj Δ.unop)) C
@[simp]
theorem
CategoryTheory.nerve_map
(C : Type u)
[CategoryTheory.Category.{v, u} C]
:
∀ {X Y : SimplexCategoryᵒᵖ} (f : X ⟶ Y) (x : CategoryTheory.Functor (↑(SimplexCategory.toCat.obj X.unop)) C),
(CategoryTheory.nerve C).map f x = CategoryTheory.Functor.comp (SimplexCategory.toCat.map f.unop) x
The nerve of a category
Instances For
@[simp]
@[simp]
theorem
CategoryTheory.nerveFunctor_map_app :
∀ {X Y : CategoryTheory.Cat} (F : X ⟶ Y) (Δ : SimplexCategoryᵒᵖ) (x : ((fun C => CategoryTheory.nerve ↑C) X).obj Δ),
(CategoryTheory.nerveFunctor.map F).app Δ x = CategoryTheory.Functor.comp x F
The nerve of a category, as a functor Cat ⥤ SSet