Documentation

Mathlib.AlgebraicTopology.SimplicialObject

Simplicial objects in a category. #

A simplicial object in a category C is a C-valued presheaf on SimplexCategory. (Similarly a cosimplicial object is functor SimplexCategory ⥤ C.)

Use the notation X _[n] in the Simplicial locale to obtain the n-th term of a (co)simplicial object X, where n is a natural number.

The category of simplicial objects valued in a category C. This is the category of contravariant functors from SimplexCategory to C.

Instances For

    X _[n] denotes the nth-term of the simplicial object X

    Instances For

      Face maps for a simplicial object.

      Instances For

        Degeneracy maps for a simplicial object.

        Instances For

          Isomorphisms from identities in ℕ.

          Instances For

            Truncated simplicial objects.

            Instances For

              The skeleton functor from simplicial objects to truncated simplicial objects.

              Instances For
                @[inline, reducible]

                The constant simplicial object is the constant functor.

                Instances For

                  The category of augmented simplicial objects, defined as a comma category.

                  Instances For
                    @[simp]
                    theorem CategoryTheory.SimplicialObject.Augmented.toArrow_obj_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject.Augmented C) :
                    (CategoryTheory.SimplicialObject.Augmented.toArrow.obj X).hom = X.hom.app (Opposite.op (SimplexCategory.mk 0))
                    @[simp]
                    theorem CategoryTheory.SimplicialObject.Augmented.toArrow_map_right {C : Type u} [CategoryTheory.Category.{v, u} C] :
                    ∀ {X Y : CategoryTheory.SimplicialObject.Augmented C} (η : X Y), (CategoryTheory.SimplicialObject.Augmented.toArrow.map η).right = CategoryTheory.SimplicialObject.Augmented.point.map η
                    @[simp]
                    theorem CategoryTheory.SimplicialObject.Augmented.toArrow_obj_left {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject.Augmented C) :
                    (CategoryTheory.SimplicialObject.Augmented.toArrow.obj X).left = (CategoryTheory.SimplicialObject.Augmented.drop.obj X).obj (Opposite.op (SimplexCategory.mk 0))
                    @[simp]
                    theorem CategoryTheory.SimplicialObject.Augmented.toArrow_obj_right {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.SimplicialObject.Augmented C) :
                    (CategoryTheory.SimplicialObject.Augmented.toArrow.obj X).right = CategoryTheory.SimplicialObject.Augmented.point.obj X
                    @[simp]
                    theorem CategoryTheory.SimplicialObject.Augmented.toArrow_map_left {C : Type u} [CategoryTheory.Category.{v, u} C] :
                    ∀ {X Y : CategoryTheory.SimplicialObject.Augmented C} (η : X Y), (CategoryTheory.SimplicialObject.Augmented.toArrow.map η).left = (CategoryTheory.SimplicialObject.Augmented.drop.map η).app (Opposite.op (SimplexCategory.mk 0))
                    theorem CategoryTheory.SimplicialObject.Augmented.w₀ {C : Type u} [CategoryTheory.Category.{v, u} C] {X : CategoryTheory.SimplicialObject.Augmented C} {Y : CategoryTheory.SimplicialObject.Augmented C} (f : X Y) :
                    CategoryTheory.CategoryStruct.comp ((CategoryTheory.SimplicialObject.Augmented.drop.map f).app (Opposite.op (SimplexCategory.mk 0))) (Y.hom.app (Opposite.op (SimplexCategory.mk 0))) = CategoryTheory.CategoryStruct.comp (X.hom.app (Opposite.op (SimplexCategory.mk 0))) (CategoryTheory.SimplicialObject.Augmented.point.map f)

                    The compatibility of a morphism with the augmentation, on 0-simplices

                    @[simp]
                    theorem CategoryTheory.SimplicialObject.Augmented.whiskering_map_app_right (C : Type u) [CategoryTheory.Category.{v, u} C] (D : Type u') [CategoryTheory.Category.{v', u'} D] :
                    ∀ {X Y : CategoryTheory.Functor C D} (η : X Y) (A : CategoryTheory.SimplicialObject.Augmented C), (((CategoryTheory.SimplicialObject.Augmented.whiskering C D).map η).app A).right = η.app (CategoryTheory.SimplicialObject.Augmented.point.obj A)

                    Augment a simplicial object with an object.

                    Instances For

                      Cosimplicial objects.

                      Instances For

                        X _[n] denotes the nth-term of the cosimplicial object X

                        Instances For

                          Coface maps for a cosimplicial object.

                          Instances For

                            Codegeneracy maps for a cosimplicial object.

                            Instances For

                              Isomorphisms from identities in ℕ.

                              Instances For

                                Truncated cosimplicial objects.

                                Instances For

                                  The skeleton functor from cosimplicial objects to truncated cosimplicial objects.

                                  Instances For
                                    @[inline, reducible]

                                    The constant cosimplicial object.

                                    Instances For

                                      Augmented cosimplicial objects.

                                      Instances For
                                        @[simp]
                                        theorem CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_left {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject.Augmented C) :
                                        (CategoryTheory.CosimplicialObject.Augmented.toArrow.obj X).left = X.left
                                        @[simp]
                                        theorem CategoryTheory.CosimplicialObject.Augmented.toArrow_map_left {C : Type u} [CategoryTheory.Category.{v, u} C] :
                                        ∀ {X Y : CategoryTheory.CosimplicialObject.Augmented C} (η : X Y), (CategoryTheory.CosimplicialObject.Augmented.toArrow.map η).left = η.left
                                        @[simp]
                                        theorem CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_right {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject.Augmented C) :
                                        (CategoryTheory.CosimplicialObject.Augmented.toArrow.obj X).right = X.right.obj (SimplexCategory.mk 0)
                                        @[simp]
                                        theorem CategoryTheory.CosimplicialObject.Augmented.toArrow_obj_hom {C : Type u} [CategoryTheory.Category.{v, u} C] (X : CategoryTheory.CosimplicialObject.Augmented C) :
                                        (CategoryTheory.CosimplicialObject.Augmented.toArrow.obj X).hom = X.hom.app (SimplexCategory.mk 0)
                                        @[simp]
                                        theorem CategoryTheory.CosimplicialObject.Augmented.toArrow_map_right {C : Type u} [CategoryTheory.Category.{v, u} C] :
                                        ∀ {X Y : CategoryTheory.CosimplicialObject.Augmented C} (η : X Y), (CategoryTheory.CosimplicialObject.Augmented.toArrow.map η).right = η.right.app (SimplexCategory.mk 0)
                                        @[simp]

                                        Augment a cosimplicial object with an object.

                                        Instances For

                                          The anti-equivalence between simplicial objects and cosimplicial objects.

                                          Instances For

                                            The anti-equivalence between cosimplicial objects and simplicial objects.

                                            Instances For

                                              Construct an augmented cosimplicial object in the opposite category from an augmented simplicial object.

                                              Instances For

                                                Construct an augmented simplicial object from an augmented cosimplicial object in the opposite category.

                                                Instances For

                                                  Converting an augmented simplicial object to an augmented cosimplicial object and back is isomorphic to the given object.

                                                  Instances For

                                                    Converting an augmented cosimplicial object to an augmented simplicial object and back is isomorphic to the given object.

                                                    Instances For

                                                      The contravariant categorical equivalence between augmented simplicial objects and augmented cosimplicial objects in the opposite category.

                                                      Instances For