Binomial Series #
This file introduces the binomial series: $$ \sum_{k=0}^{\infty} \; \binom{a}{k} \; x^k = 1 + a x + \frac{a(a-1)}{2!} x^2 + \frac{a(a-1)(a-2)}{3!} x^3 + \cdots $$ where $a$ is an element of a normed field $\mathbb{K}$, and $x$ is an element of a normed algebra over $\mathbb{K}$.
Main Statements #
binomialSeries_radius_eq_one: The radius of convergence of the binomial series is1whenais not a natural number.binomialSeries_radius_eq_top_of_nat: In caseais natural, the series converges everywhere, since it is finite.
Binomial series: the (scalar) formal multilinear series with coefficients given
by Ring.choose a. The sum of this series is fun x โฆ (1 + x) ^ a within the radius
of convergence.
Equations
- binomialSeries ๐ธ a = FormalMultilinearSeries.ofScalars ๐ธ fun (x : โ) => Ring.choose a x
Instances For
The radius of convergence of binomialSeries ๐ธ a is โค for natural a.
The radius of convergence of binomialSeries ๐ธ a is 1, when a is not natural.
Alias of Real.one_add_rpow_hasFPowerSeriesAt_zero.
Alias of Real.hasFPowerSeriesOnBall_ofScalars_mul_add_zero.
โ (ai + b) zโฑ = (b - a) / (1 - z) + a / (1 - z)ยฒ