Binomial Series #
This file introduces the binomial series: $$ \sum_{k=0}^{\infty} \; \binom{a}{k} \; x^k = 1 + a x + \frac{a(a-1)}{2!} x^2 + \frac{a(a-1)(a-2)}{3!} x^3 + \cdots $$ where $a$ is an element of a normed field $\mathbb{K}$, and $x$ is an element of a normed algebra over $\mathbb{K}$.
Main Statements #
binomialSeries_radius_eq_one
: The radius of convergence of the binomial series is1
whena
is not a natural number.binomialSeries_radius_eq_top_of_nat
: In casea
is natural, the series converges everywhere, since it is finite.
noncomputable def
binomialSeries
{𝕂 : Type u}
[Field 𝕂]
[CharZero 𝕂]
(𝔸 : Type v)
[Ring 𝔸]
[Algebra 𝕂 𝔸]
[TopologicalSpace 𝔸]
[IsTopologicalRing 𝔸]
(a : 𝕂)
:
FormalMultilinearSeries 𝕂 𝔸 𝔸
Binomial series: the (scalar) formal multilinear series with coefficients given
by Ring.choose a
. The sum of this series is fun x ↦ (1 + x) ^ a
within the radius
of convergence.
Equations
- binomialSeries 𝔸 a = FormalMultilinearSeries.ofScalars 𝔸 fun (x : ℕ) => Ring.choose a x
Instances For
theorem
binomialSeries_eq_ordinaryHypergeometricSeries
{𝕂 : Type u}
[Field 𝕂]
[CharZero 𝕂]
{𝔸 : Type v}
[Ring 𝔸]
[Algebra 𝕂 𝔸]
[TopologicalSpace 𝔸]
[IsTopologicalRing 𝔸]
{a b : 𝕂}
(h : ∀ (k : ℕ), ↑k ≠ -b)
:
binomialSeries 𝔸 a = (ordinaryHypergeometricSeries 𝔸 (-a) b b).compContinuousLinearMap (-ContinuousLinearMap.id 𝕂 𝔸)
theorem
binomialSeries_radius_eq_top_of_nat
{𝕂 : Type v}
[RCLike 𝕂]
{𝔸 : Type u}
[NormedDivisionRing 𝔸]
[NormedAlgebra 𝕂 𝔸]
{a : ℕ}
:
The radius of convergence of binomialSeries 𝔸 a
is ⊤
for natural a
.
theorem
binomialSeries_radius_eq_one
{𝕂 : Type v}
[RCLike 𝕂]
{𝔸 : Type u}
[NormedDivisionRing 𝔸]
[NormedAlgebra 𝕂 𝔸]
{a : 𝕂}
(ha : ∀ (k : ℕ), a ≠ ↑k)
:
The radius of convergence of binomialSeries 𝔸 a
is 1
, when a
is not natural.