Documentation

Mathlib.Analysis.Analytic.Constructions

Various ways to combine analytic functions #

We show that the following are analytic:

  1. Cartesian products of analytic functions
  2. Arithmetic on analytic functions: mul, smul, inv, div
  3. Finite sums and products: Finset.sum, Finset.prod

Cartesian products are analytic #

theorem FormalMultilinearSeries.radius_prod_eq_min {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] (p : FormalMultilinearSeries π•œ E F) (q : FormalMultilinearSeries π•œ E G) :
(p.prod q).radius = min p.radius q.radius

The radius of the Cartesian product of two formal series is the minimum of their radii.

theorem HasFPowerSeriesOnBall.prod {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {e : E} {f : E β†’ F} {g : E β†’ G} {r : ENNReal} {s : ENNReal} {p : FormalMultilinearSeries π•œ E F} {q : FormalMultilinearSeries π•œ E G} (hf : HasFPowerSeriesOnBall f p e r) (hg : HasFPowerSeriesOnBall g q e s) :
HasFPowerSeriesOnBall (fun (x : E) => (f x, g x)) (p.prod q) e (min r s)
theorem HasFPowerSeriesAt.prod {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {e : E} {f : E β†’ F} {g : E β†’ G} {p : FormalMultilinearSeries π•œ E F} {q : FormalMultilinearSeries π•œ E G} (hf : HasFPowerSeriesAt f p e) (hg : HasFPowerSeriesAt g q e) :
HasFPowerSeriesAt (fun (x : E) => (f x, g x)) (p.prod q) e
theorem AnalyticAt.prod {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {e : E} {f : E β†’ F} {g : E β†’ G} (hf : AnalyticAt π•œ f e) (hg : AnalyticAt π•œ g e) :
AnalyticAt π•œ (fun (x : E) => (f x, g x)) e

The Cartesian product of analytic functions is analytic.

theorem AnalyticOn.prod {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E β†’ F} {g : E β†’ G} {s : Set E} (hf : AnalyticOn π•œ f s) (hg : AnalyticOn π•œ g s) :
AnalyticOn π•œ (fun (x : E) => (f x, g x)) s

The Cartesian product of analytic functions is analytic.

theorem AnalyticAt.compβ‚‚ {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} {H : Type u_6} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] [NormedAddCommGroup H] [NormedSpace π•œ H] {h : F Γ— G β†’ H} {f : E β†’ F} {g : E β†’ G} {x : E} (ha : AnalyticAt π•œ h (f x, g x)) (fa : AnalyticAt π•œ f x) (ga : AnalyticAt π•œ g x) :
AnalyticAt π•œ (fun (x : E) => h (f x, g x)) x

AnalyticAt.comp for functions on product spaces

theorem AnalyticOn.compβ‚‚ {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} {H : Type u_6} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] [NormedAddCommGroup H] [NormedSpace π•œ H] {h : F Γ— G β†’ H} {f : E β†’ F} {g : E β†’ G} {s : Set (F Γ— G)} {t : Set E} (ha : AnalyticOn π•œ h s) (fa : AnalyticOn π•œ f t) (ga : AnalyticOn π•œ g t) (m : βˆ€ x ∈ t, (f x, g x) ∈ s) :
AnalyticOn π•œ (fun (x : E) => h (f x, g x)) t

AnalyticOn.comp for functions on product spaces

theorem AnalyticAt.curry_left {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {p : E Γ— F} (fa : AnalyticAt π•œ f p) :
AnalyticAt π•œ (fun (x : E) => f (x, p.2)) p.1

Analytic functions on products are analytic in the first coordinate

theorem AnalyticAt.along_fst {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {p : E Γ— F} (fa : AnalyticAt π•œ f p) :
AnalyticAt π•œ (fun (x : E) => f (x, p.2)) p.1

Alias of AnalyticAt.curry_left.


Analytic functions on products are analytic in the first coordinate

theorem AnalyticAt.curry_right {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {p : E Γ— F} (fa : AnalyticAt π•œ f p) :
AnalyticAt π•œ (fun (y : F) => f (p.1, y)) p.2

Analytic functions on products are analytic in the second coordinate

theorem AnalyticAt.along_snd {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {p : E Γ— F} (fa : AnalyticAt π•œ f p) :
AnalyticAt π•œ (fun (y : F) => f (p.1, y)) p.2

Alias of AnalyticAt.curry_right.


Analytic functions on products are analytic in the second coordinate

theorem AnalyticOn.curry_left {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {s : Set (E Γ— F)} {y : F} (fa : AnalyticOn π•œ f s) :
AnalyticOn π•œ (fun (x : E) => f (x, y)) {x : E | (x, y) ∈ s}

Analytic functions on products are analytic in the first coordinate

theorem AnalyticOn.along_fst {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {s : Set (E Γ— F)} {y : F} (fa : AnalyticOn π•œ f s) :
AnalyticOn π•œ (fun (x : E) => f (x, y)) {x : E | (x, y) ∈ s}

Alias of AnalyticOn.curry_left.


Analytic functions on products are analytic in the first coordinate

theorem AnalyticOn.curry_right {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {x : E} {s : Set (E Γ— F)} (fa : AnalyticOn π•œ f s) :
AnalyticOn π•œ (fun (y : F) => f (x, y)) {y : F | (x, y) ∈ s}

Analytic functions on products are analytic in the second coordinate

theorem AnalyticOn.along_snd {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} {G : Type u_5} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] [NormedAddCommGroup G] [NormedSpace π•œ G] {f : E Γ— F β†’ G} {x : E} {s : Set (E Γ— F)} (fa : AnalyticOn π•œ f s) :
AnalyticOn π•œ (fun (y : F) => f (x, y)) {y : F | (x, y) ∈ s}

Alias of AnalyticOn.curry_right.


Analytic functions on products are analytic in the second coordinate

Arithmetic on analytic functions #

theorem analyticAt_smul {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] [NormedSpace 𝕝 E] [IsScalarTower π•œ 𝕝 E] (z : 𝕝 Γ— E) :
AnalyticAt π•œ (fun (x : 𝕝 Γ— E) => x.1 β€’ x.2) z

Scalar multiplication is analytic (jointly in both variables). The statement is a little pedantic to allow towers of field extensions.

TODO: can we replace π•œ' with a "normed module" in such a way that analyticAt_mul is a special case of this?

theorem analyticAt_mul {π•œ : Type u_2} [NontriviallyNormedField π•œ] {A : Type u_8} [NormedRing A] [NormedAlgebra π•œ A] (z : A Γ— A) :
AnalyticAt π•œ (fun (x : A Γ— A) => x.1 * x.2) z

Multiplication in a normed algebra over π•œ is analytic.

theorem AnalyticAt.smul {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] [NormedSpace 𝕝 F] [IsScalarTower π•œ 𝕝 F] {f : E β†’ 𝕝} {g : E β†’ F} {z : E} (hf : AnalyticAt π•œ f z) (hg : AnalyticAt π•œ g z) :
AnalyticAt π•œ (fun (x : E) => f x β€’ g x) z

Scalar multiplication of one analytic function by another.

theorem AnalyticOn.smul {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] [NormedSpace 𝕝 F] [IsScalarTower π•œ 𝕝 F] {f : E β†’ 𝕝} {g : E β†’ F} {s : Set E} (hf : AnalyticOn π•œ f s) (hg : AnalyticOn π•œ g s) :
AnalyticOn π•œ (fun (x : E) => f x β€’ g x) s

Scalar multiplication of one analytic function by another.

theorem AnalyticAt.mul {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {A : Type u_8} [NormedRing A] [NormedAlgebra π•œ A] {f : E β†’ A} {g : E β†’ A} {z : E} (hf : AnalyticAt π•œ f z) (hg : AnalyticAt π•œ g z) :
AnalyticAt π•œ (fun (x : E) => f x * g x) z

Multiplication of analytic functions (valued in a normed π•œ-algebra) is analytic.

theorem AnalyticOn.mul {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {A : Type u_8} [NormedRing A] [NormedAlgebra π•œ A] {f : E β†’ A} {g : E β†’ A} {s : Set E} (hf : AnalyticOn π•œ f s) (hg : AnalyticOn π•œ g s) :
AnalyticOn π•œ (fun (x : E) => f x * g x) s

Multiplication of analytic functions (valued in a normed π•œ-algebra) is analytic.

theorem AnalyticAt.pow {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {A : Type u_8} [NormedRing A] [NormedAlgebra π•œ A] {f : E β†’ A} {z : E} (hf : AnalyticAt π•œ f z) (n : β„•) :
AnalyticAt π•œ (fun (x : E) => f x ^ n) z

Powers of analytic functions (into a normed π•œ-algebra) are analytic.

theorem AnalyticOn.pow {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {A : Type u_8} [NormedRing A] [NormedAlgebra π•œ A] {f : E β†’ A} {s : Set E} (hf : AnalyticOn π•œ f s) (n : β„•) :
AnalyticOn π•œ (fun (x : E) => f x ^ n) s

Powers of analytic functions (into a normed π•œ-algebra) are analytic.

def formalMultilinearSeries_geometric (π•œ : Type u_9) (A : Type u_10) [NontriviallyNormedField π•œ] [NormedRing A] [NormedAlgebra π•œ A] :

The geometric series 1 + x + x ^ 2 + ... as a FormalMultilinearSeries.

Equations
Instances For
    theorem formalMultilinearSeries_geometric_radius (π•œ : Type u_10) [NontriviallyNormedField π•œ] (A : Type u_9) [NormedRing A] [NormOneClass A] [NormedAlgebra π•œ A] :
    (formalMultilinearSeries_geometric π•œ A).radius = 1
    theorem hasFPowerSeriesOnBall_inv_one_sub (π•œ : Type u_9) (𝕝 : Type u_10) [NontriviallyNormedField π•œ] [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] :
    HasFPowerSeriesOnBall (fun (x : 𝕝) => (1 - x)⁻¹) (formalMultilinearSeries_geometric π•œ 𝕝) 0 1
    theorem analyticAt_inv_one_sub {π•œ : Type u_2} [NontriviallyNormedField π•œ] (𝕝 : Type u_9) [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] :
    AnalyticAt π•œ (fun (x : 𝕝) => (1 - x)⁻¹) 0
    theorem analyticAt_inv {π•œ : Type u_2} [NontriviallyNormedField π•œ] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] {z : 𝕝} (hz : z β‰  0) :
    AnalyticAt π•œ Inv.inv z

    If 𝕝 is a normed field extension of π•œ, then the inverse map 𝕝 β†’ 𝕝 is π•œ-analytic away from 0.

    theorem analyticOn_inv {π•œ : Type u_2} [NontriviallyNormedField π•œ] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] :
    AnalyticOn π•œ (fun (z : 𝕝) => z⁻¹) {z : 𝕝 | z β‰  0}

    x⁻¹ is analytic away from zero

    theorem AnalyticAt.inv {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] {f : E β†’ 𝕝} {x : E} (fa : AnalyticAt π•œ f x) (f0 : f x β‰  0) :
    AnalyticAt π•œ (fun (x : E) => (f x)⁻¹) x

    (f x)⁻¹ is analytic away from f x = 0

    theorem AnalyticOn.inv {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] {f : E β†’ 𝕝} {s : Set E} (fa : AnalyticOn π•œ f s) (f0 : βˆ€ x ∈ s, f x β‰  0) :
    AnalyticOn π•œ (fun (x : E) => (f x)⁻¹) s

    x⁻¹ is analytic away from zero

    theorem AnalyticAt.div {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] {f : E β†’ 𝕝} {g : E β†’ 𝕝} {x : E} (fa : AnalyticAt π•œ f x) (ga : AnalyticAt π•œ g x) (g0 : g x β‰  0) :
    AnalyticAt π•œ (fun (x : E) => f x / g x) x

    f x / g x is analytic away from g x = 0

    theorem AnalyticOn.div {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {𝕝 : Type u_7} [NontriviallyNormedField 𝕝] [NormedAlgebra π•œ 𝕝] {f : E β†’ 𝕝} {g : E β†’ 𝕝} {s : Set E} (fa : AnalyticOn π•œ f s) (ga : AnalyticOn π•œ g s) (g0 : βˆ€ x ∈ s, g x β‰  0) :
    AnalyticOn π•œ (fun (x : E) => f x / g x) s

    f x / g x is analytic away from g x = 0

    Finite sums and products of analytic functions #

    theorem Finset.analyticAt_sum {Ξ± : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : Ξ± β†’ E β†’ F} {c : E} (N : Finset Ξ±) (h : βˆ€ n ∈ N, AnalyticAt π•œ (f n) c) :
    AnalyticAt π•œ (fun (z : E) => βˆ‘ n ∈ N, f n z) c

    Finite sums of analytic functions are analytic

    theorem Finset.analyticOn_sum {Ξ± : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} {F : Type u_4} [NormedAddCommGroup E] [NormedSpace π•œ E] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : Ξ± β†’ E β†’ F} {s : Set E} (N : Finset Ξ±) (h : βˆ€ n ∈ N, AnalyticOn π•œ (f n) s) :
    AnalyticOn π•œ (fun (z : E) => βˆ‘ n ∈ N, f n z) s

    Finite sums of analytic functions are analytic

    theorem Finset.analyticAt_prod {Ξ± : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {A : Type u_9} [NormedCommRing A] [NormedAlgebra π•œ A] {f : Ξ± β†’ E β†’ A} {c : E} (N : Finset Ξ±) (h : βˆ€ n ∈ N, AnalyticAt π•œ (f n) c) :
    AnalyticAt π•œ (fun (z : E) => ∏ n ∈ N, f n z) c

    Finite products of analytic functions are analytic

    theorem Finset.analyticOn_prod {Ξ± : Type u_1} {π•œ : Type u_2} [NontriviallyNormedField π•œ] {E : Type u_3} [NormedAddCommGroup E] [NormedSpace π•œ E] {A : Type u_9} [NormedCommRing A] [NormedAlgebra π•œ A] {f : Ξ± β†’ E β†’ A} {s : Set E} (N : Finset Ξ±) (h : βˆ€ n ∈ N, AnalyticOn π•œ (f n) s) :
    AnalyticOn π•œ (fun (z : E) => ∏ n ∈ N, f n z) s

    Finite products of analytic functions are analytic