Documentation

Mathlib.Analysis.Analytic.Order

Vanishing Order of Analytic Functions #

This file defines the order of vanishing of an analytic function f at a point zโ‚€, as an element of โ„•โˆž.

TODO: Uniformize API between analytic and meromorphic functions

Vanishing Order at a Point: Definition and Characterization #

noncomputable def AnalyticAt.order {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {zโ‚€ : ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) :

The order of vanishing of f at zโ‚€, as an element of โ„•โˆž.

The order is defined to be โˆž if f is identically 0 on a neighbourhood of zโ‚€, and otherwise the unique n such that f can locally be written as f z = (z - zโ‚€) ^ n โ€ข g z, where g is analytic and does not vanish at zโ‚€. See AnalyticAt.order_eq_top_iff and AnalyticAt.order_eq_nat_iff for these equivalences.

Equations
Instances For
    theorem AnalyticAt.order_eq_top_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {zโ‚€ : ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) :
    hf.order = โŠค โ†” โˆ€แถ  (z : ๐•œ) in nhds zโ‚€, f z = 0

    The order of an analytic function f at a zโ‚€ is infinity iff f vanishes locally around zโ‚€.

    theorem AnalyticAt.order_eq_nat_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {zโ‚€ : ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) (n : โ„•) :
    hf.order = โ†‘n โ†” โˆƒ (g : ๐•œ โ†’ E), AnalyticAt ๐•œ g zโ‚€ โˆง g zโ‚€ โ‰  0 โˆง โˆ€แถ  (z : ๐•œ) in nhds zโ‚€, f z = (z - zโ‚€) ^ n โ€ข g z

    The order of an analytic function f at zโ‚€ equals a natural number n iff f can locally be written as f z = (z - zโ‚€) ^ n โ€ข g z, where g is analytic and does not vanish at zโ‚€.

    theorem AnalyticAt.order_ne_top_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {zโ‚€ : ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) :
    hf.order โ‰  โŠค โ†” โˆƒ (g : ๐•œ โ†’ E), AnalyticAt ๐•œ g zโ‚€ โˆง g zโ‚€ โ‰  0 โˆง f =แถ [nhds zโ‚€] fun (z : ๐•œ) => (z - zโ‚€) ^ hf.order.toNat โ€ข g z

    The order of an analytic function f at zโ‚€ is finite iff f can locally be written as f z = (z - zโ‚€) ^ order โ€ข g z, where g is analytic and does not vanish at zโ‚€.

    @[deprecated AnalyticAt.order_ne_top_iff (since := "2025-02-03")]
    theorem AnalyticAt.order_neq_top_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {zโ‚€ : ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) :
    hf.order โ‰  โŠค โ†” โˆƒ (g : ๐•œ โ†’ E), AnalyticAt ๐•œ g zโ‚€ โˆง g zโ‚€ โ‰  0 โˆง f =แถ [nhds zโ‚€] fun (z : ๐•œ) => (z - zโ‚€) ^ hf.order.toNat โ€ข g z

    Alias of AnalyticAt.order_ne_top_iff.


    The order of an analytic function f at zโ‚€ is finite iff f can locally be written as f z = (z - zโ‚€) ^ order โ€ข g z, where g is analytic and does not vanish at zโ‚€.

    theorem AnalyticAt.order_eq_zero_iff {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {zโ‚€ : ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) :
    hf.order = 0 โ†” f zโ‚€ โ‰  0

    The order of an analytic function f at zโ‚€ is zero iff f does not vanish at zโ‚€.

    theorem AnalyticAt.apply_eq_zero_of_order_toNat_ne_zero {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {zโ‚€ : ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) :
    hf.order.toNat โ‰  0 โ†’ f zโ‚€ = 0

    An analytic function vanishes at a point if its order is nonzero when converted to โ„•.

    Vanishing Order at a Point: Behaviour under Ring Operations #

    The theorem AnalyticAt.order_mul and AnalyticAt.order_pow establish additivity of the order under multiplication and taking powers.

    TODO: Behaviour under Addition/Subtraction

    theorem AnalyticAt.order_mul_of_order_eq_top {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {zโ‚€ : ๐•œ} {f g : ๐•œ โ†’ ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) (hg : AnalyticAt ๐•œ g zโ‚€) (h'f : hf.order = โŠค) :
    โ‹ฏ.order = โŠค

    Helper lemma for AnalyticAt.order_mul

    theorem AnalyticAt.order_mul {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {zโ‚€ : ๐•œ} {f g : ๐•œ โ†’ ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) (hg : AnalyticAt ๐•œ g zโ‚€) :
    โ‹ฏ.order = hf.order + hg.order

    The order is additive when multiplying analytic functions.

    theorem AnalyticAt.order_pow {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {zโ‚€ : ๐•œ} {f : ๐•œ โ†’ ๐•œ} (hf : AnalyticAt ๐•œ f zโ‚€) {n : โ„•} :
    โ‹ฏ.order = n โ€ข hf.order

    The order multiplies by n when taking an analytic function to its nth power.

    Level Sets of the Order Function #

    TODO:

    theorem AnalyticOnNhd.isClopen_setOf_order_eq_top {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {f : ๐•œ โ†’ E} {U : Set ๐•œ} (hโ‚f : AnalyticOnNhd ๐•œ f U) :
    IsClopen {u : โ†‘U | โ‹ฏ.order = โŠค}

    The set where an analytic function has infinite order is clopen in its domain of analyticity.