Documentation

Mathlib.Analysis.Analytic.RadiusLiminf

Representation of FormalMultilinearSeries.radius as a liminf #

In this file we prove that the radius of convergence of a FormalMultilinearSeries is equal to $\liminf_{n\to\infty} \frac{1}{\sqrt[n]{โ€–p nโ€–}}$. This lemma can't go to Analysis.Analytic.Basic because this would create a circular dependency once we redefine exp using FormalMultilinearSeries.

theorem FormalMultilinearSeries.radius_eq_liminf {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (p : FormalMultilinearSeries ๐•œ E F) :
p.radius = Filter.liminf (fun (n : โ„•) => 1 / โ†‘(โ€–p nโ€–โ‚Š ^ (1 / โ†‘n))) Filter.atTop

The radius of a formal multilinear series is equal to $\liminf_{n\to\infty} \frac{1}{\sqrt[n]{โ€–p nโ€–}}$. The actual statement uses โ„โ‰ฅ0 and some coercions.

theorem FormalMultilinearSeries.radius_inv_eq_limsup {๐•œ : Type u_1} [NontriviallyNormedField ๐•œ] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace ๐•œ E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace ๐•œ F] (p : FormalMultilinearSeries ๐•œ E F) :

The Cauchy-Hadamard theorem for formal multilinear series: The inverse of the radius is equal to $\limsup_{n\to\infty} \sqrt[n]{โ€–p nโ€–}$.