Representation of FormalMultilinearSeries.radius as a liminf #
In this file we prove that the radius of convergence of a FormalMultilinearSeries is equal to
$\liminf_{n\to\infty} \frac{1}{\sqrt[n]{โp nโ}}$. This lemma can't go to Analysis.Analytic.Basic
because this would create a circular dependency once we redefine exp using
FormalMultilinearSeries.
theorem
FormalMultilinearSeries.radius_eq_liminf
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(p : FormalMultilinearSeries ๐ E F)
:
The radius of a formal multilinear series is equal to
$\liminf_{n\to\infty} \frac{1}{\sqrt[n]{โp nโ}}$. The actual statement uses โโฅ0 and some
coercions.
theorem
FormalMultilinearSeries.radius_inv_eq_limsup
{๐ : Type u_1}
[NontriviallyNormedField ๐]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace ๐ F]
(p : FormalMultilinearSeries ๐ E F)
:
The Cauchy-Hadamard theorem for formal multilinear series: The inverse of the radius is equal to $\limsup_{n\to\infty} \sqrt[n]{โp nโ}$.