theorem
WithLp.analyticOn_ofLp
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜 F]
(p : ENNReal)
[Fact (1 ≤ p)]
(s : Set (WithLp p (E × F)))
:
AnalyticOn 𝕜 ofLp s
theorem
WithLp.analyticOn_toLp
{𝕜 : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField 𝕜]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace 𝕜 E]
[NormedSpace 𝕜 F]
(p : ENNReal)
[Fact (1 ≤ p)]
(s : Set (E × F))
:
AnalyticOn 𝕜 (toLp p) s
theorem
PiLp.analyticOn_ofLp
{𝕜 : Type u_1}
{ι : Type u_2}
[Fintype ι]
{E : ι → Type u_3}
[NontriviallyNormedField 𝕜]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
(p : ENNReal)
[Fact (1 ≤ p)]
(s : Set (PiLp p E))
:
theorem
PiLp.analyticOn_toLp
{𝕜 : Type u_1}
{ι : Type u_2}
[Fintype ι]
{E : ι → Type u_3}
[NontriviallyNormedField 𝕜]
[(i : ι) → NormedAddCommGroup (E i)]
[(i : ι) → NormedSpace 𝕜 (E i)]
(p : ENNReal)
[Fact (1 ≤ p)]
(s : Set ((i : ι) → E i))
:
AnalyticOn 𝕜 (WithLp.toLp p) s