A collection of specific asymptotic results #
This file contains specific lemmas about asymptotics which don't have their place in the general
theory developed in Mathlib.Analysis.Asymptotics.Asymptotics
.
theorem
Filter.IsBoundedUnder.isLittleO_sub_self_inv
{๐ : Type u_1}
{E : Type u_2}
[NormedField ๐]
[Norm E]
{a : ๐}
{f : ๐ โ E}
(h : IsBoundedUnder (fun (x1 x2 : โ) => x1 โค x2) (nhdsWithin a {a}แถ) (norm โ f))
:
If f : ๐ โ E
is bounded in a punctured neighborhood of a
, then f(x) = o((x - a)โปยน)
as
x โ a
, x โ a
.
theorem
tendsto_pow_div_pow_atTop_atTop
{๐ : Type u_1}
[LinearOrderedField ๐]
{p q : โ}
(hpq : q < p)
:
Filter.Tendsto (fun (x : ๐) => x ^ p / x ^ q) Filter.atTop Filter.atTop
theorem
tendsto_pow_div_pow_atTop_zero
{๐ : Type u_1}
[LinearOrderedField ๐]
[TopologicalSpace ๐]
[OrderTopology ๐]
{p q : โ}
(hpq : p < q)
:
Filter.Tendsto (fun (x : ๐) => x ^ p / x ^ q) Filter.atTop (nhds 0)
theorem
Asymptotics.isLittleO_pow_pow_atTop_of_lt
{๐ : Type u_1}
[NormedLinearOrderedField ๐]
[OrderTopology ๐]
{p q : โ}
(hpq : p < q)
:
(fun (x : ๐) => x ^ p) =o[Filter.atTop] fun (x : ๐) => x ^ q
theorem
Asymptotics.IsBigO.trans_tendsto_norm_atTop
{๐ : Type u_1}
[NormedLinearOrderedField ๐]
{ฮฑ : Type u_2}
{u v : ฮฑ โ ๐}
{l : Filter ฮฑ}
(huv : u =O[l] v)
(hu : Filter.Tendsto (fun (x : ฮฑ) => โu xโ) l Filter.atTop)
:
Filter.Tendsto (fun (x : ฮฑ) => โv xโ) l Filter.atTop
theorem
Asymptotics.IsLittleO.sum_range
{ฮฑ : Type u_1}
[NormedAddCommGroup ฮฑ]
{f : โ โ ฮฑ}
{g : โ โ โ}
(h : f =o[Filter.atTop] g)
(hg : 0 โค g)
(h'g : Filter.Tendsto (fun (n : โ) => โ i โ Finset.range n, g i) Filter.atTop Filter.atTop)
:
(fun (n : โ) => โ i โ Finset.range n, f i) =o[Filter.atTop] fun (n : โ) => โ i โ Finset.range n, g i
theorem
Asymptotics.isLittleO_sum_range_of_tendsto_zero
{ฮฑ : Type u_1}
[NormedAddCommGroup ฮฑ]
{f : โ โ ฮฑ}
(h : Filter.Tendsto f Filter.atTop (nhds 0))
:
(fun (n : โ) => โ i โ Finset.range n, f i) =o[Filter.atTop] fun (n : โ) => โn
theorem
Filter.Tendsto.cesaro_smul
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace โ E]
{u : โ โ E}
{l : E}
(h : Tendsto u atTop (nhds l))
:
The Cesaro average of a converging sequence converges to the same limit.