Classes of C⋆-algebras #
This file defines classes for complex C⋆-algebras. These are (unital or non-unital, commutative or
noncommutative) Banach algebra over ℂ
with an antimultiplicative conjugate-linear involution
(star
) satisfying the C⋆-identity ∥star x * x∥ = ∥x∥ ^ 2
.
Notes #
These classes are not defined in Mathlib.Analysis.CStarAlgebra.Basic
because they require
heavier imports.
class
NonUnitalCStarAlgebra
(A : Type u_1)
extends NonUnitalNormedRing A, StarRing A, CompleteSpace A, CStarRing A, NormedSpace ℂ A, IsScalarTower ℂ A A, SMulCommClass ℂ A A, StarModule ℂ A :
Type u_1
The class of non-unital (complex) C⋆-algebras.
- add : A → A → A
- zero : A
- nsmul_zero : ∀ (x : A), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : A), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- neg : A → A
- sub : A → A → A
- sub_eq_add_neg : ∀ (a b : A), a - b = a + -b
- zsmul_zero' : ∀ (a : A), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : A), SubNegMonoid.zsmul (↑n.succ) a = SubNegMonoid.zsmul (↑n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : A), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑n.succ) a
- neg_add_cancel : ∀ (a : A), -a + a = 0
- mul : A → A → A
- edist_dist : ∀ (x y : A), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- uniformity_dist : uniformity A = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : A × A | dist p.1 p.2 < ε}
- toBornology : Bornology A
- cobounded_sets : (Bornology.cobounded A).sets = {s : Set A | ∃ (C : ℝ), ∀ x ∈ sᶜ, ∀ y ∈ sᶜ, dist x y ≤ C}
- eq_of_dist_eq_zero : ∀ {x y : A}, dist x y = 0 → x = y
- star : A → A
Instances
class
NonUnitalCommCStarAlgebra
(A : Type u_1)
extends NonUnitalNormedCommRing A, NonUnitalCStarAlgebra A :
Type u_1
The class of non-unital commutative (complex) C⋆-algebras.
- add : A → A → A
- zero : A
- nsmul_zero : ∀ (x : A), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : A), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- neg : A → A
- sub : A → A → A
- sub_eq_add_neg : ∀ (a b : A), a - b = a + -b
- zsmul_zero' : ∀ (a : A), SubNegMonoid.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : A), SubNegMonoid.zsmul (↑n.succ) a = SubNegMonoid.zsmul (↑n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : A), SubNegMonoid.zsmul (Int.negSucc n) a = -SubNegMonoid.zsmul (↑n.succ) a
- neg_add_cancel : ∀ (a : A), -a + a = 0
- mul : A → A → A
- edist_dist : ∀ (x y : A), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- uniformity_dist : uniformity A = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : A × A | dist p.1 p.2 < ε}
- toBornology : Bornology A
- cobounded_sets : (Bornology.cobounded A).sets = {s : Set A | ∃ (C : ℝ), ∀ x ∈ sᶜ, ∀ y ∈ sᶜ, dist x y ≤ C}
- eq_of_dist_eq_zero : ∀ {x y : A}, dist x y = 0 → x = y
- star : A → A
Instances
class
CStarAlgebra
(A : Type u_1)
extends NormedRing A, StarRing A, CompleteSpace A, CStarRing A, NormedAlgebra ℂ A, StarModule ℂ A :
Type u_1
The class of unital (complex) C⋆-algebras.
- add : A → A → A
- zero : A
- nsmul_zero : ∀ (x : A), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : A), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- mul : A → A → A
- one : A
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow_zero : ∀ (x : A), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : A), Semiring.npow (n + 1) x = Semiring.npow n x * x
- neg : A → A
- sub : A → A → A
- sub_eq_add_neg : ∀ (a b : A), a - b = a + -b
- zsmul_zero' : ∀ (a : A), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : A), Ring.zsmul (↑n.succ) a = Ring.zsmul (↑n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : A), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑n.succ) a
- neg_add_cancel : ∀ (a : A), -a + a = 0
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- edist_dist : ∀ (x y : A), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- uniformity_dist : uniformity A = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : A × A | dist p.1 p.2 < ε}
- toBornology : Bornology A
- cobounded_sets : (Bornology.cobounded A).sets = {s : Set A | ∃ (C : ℝ), ∀ x ∈ sᶜ, ∀ y ∈ sᶜ, dist x y ≤ C}
- eq_of_dist_eq_zero : ∀ {x y : A}, dist x y = 0 → x = y
- star : A → A
Instances
The class of unital commutative (complex) C⋆-algebras.
- add : A → A → A
- zero : A
- nsmul_zero : ∀ (x : A), AddMonoid.nsmul 0 x = 0
- nsmul_succ : ∀ (n : ℕ) (x : A), AddMonoid.nsmul (n + 1) x = AddMonoid.nsmul n x + x
- mul : A → A → A
- one : A
- natCast_zero : NatCast.natCast 0 = 0
- natCast_succ : ∀ (n : ℕ), NatCast.natCast (n + 1) = NatCast.natCast n + 1
- npow_zero : ∀ (x : A), Semiring.npow 0 x = 1
- npow_succ : ∀ (n : ℕ) (x : A), Semiring.npow (n + 1) x = Semiring.npow n x * x
- neg : A → A
- sub : A → A → A
- sub_eq_add_neg : ∀ (a b : A), a - b = a + -b
- zsmul_zero' : ∀ (a : A), Ring.zsmul 0 a = 0
- zsmul_succ' : ∀ (n : ℕ) (a : A), Ring.zsmul (↑n.succ) a = Ring.zsmul (↑n) a + a
- zsmul_neg' : ∀ (n : ℕ) (a : A), Ring.zsmul (Int.negSucc n) a = -Ring.zsmul (↑n.succ) a
- neg_add_cancel : ∀ (a : A), -a + a = 0
- intCast_ofNat : ∀ (n : ℕ), IntCast.intCast ↑n = ↑n
- intCast_negSucc : ∀ (n : ℕ), IntCast.intCast (Int.negSucc n) = -↑(n + 1)
- edist_dist : ∀ (x y : A), PseudoMetricSpace.edist x y = ENNReal.ofReal (dist x y)
- uniformity_dist : uniformity A = ⨅ (ε : ℝ), ⨅ (_ : ε > 0), Filter.principal {p : A × A | dist p.1 p.2 < ε}
- toBornology : Bornology A
- cobounded_sets : (Bornology.cobounded A).sets = {s : Set A | ∃ (C : ℝ), ∀ x ∈ sᶜ, ∀ y ∈ sᶜ, dist x y ≤ C}
- eq_of_dist_eq_zero : ∀ {x y : A}, dist x y = 0 → x = y
- star : A → A
Instances
@[instance 100]
Equations
- CStarAlgebra.toNonUnitalCStarAlgebra A = NonUnitalCStarAlgebra.mk
@[instance 100]
Equations
- CommCStarAlgebra.toNonUnitalCommCStarAlgebra A = NonUnitalCommCStarAlgebra.mk
noncomputable instance
StarSubalgebra.cstarAlgebra
{S : Type u_1}
{A : Type u_2}
[CStarAlgebra A]
[SetLike S A]
[SubringClass S A]
[SMulMemClass S ℂ A]
[StarMemClass S A]
(s : S)
[h_closed : IsClosed ↑s]
:
CStarAlgebra ↥s
Equations
- StarSubalgebra.cstarAlgebra s = CStarAlgebra.mk
noncomputable instance
StarSubalgebra.commCStarAlgebra
{S : Type u_1}
{A : Type u_2}
[CommCStarAlgebra A]
[SetLike S A]
[SubringClass S A]
[SMulMemClass S ℂ A]
[StarMemClass S A]
(s : S)
[h_closed : IsClosed ↑s]
:
Equations
- StarSubalgebra.commCStarAlgebra s = CommCStarAlgebra.mk
noncomputable instance
NonUnitalStarSubalgebra.nonUnitalCStarAlgebra
{S : Type u_1}
{A : Type u_2}
[NonUnitalCStarAlgebra A]
[SetLike S A]
[NonUnitalSubringClass S A]
[SMulMemClass S ℂ A]
[StarMemClass S A]
(s : S)
[h_closed : IsClosed ↑s]
:
Equations
- NonUnitalStarSubalgebra.nonUnitalCStarAlgebra s = NonUnitalCStarAlgebra.mk
noncomputable instance
NonUnitalStarSubalgebra.nonUnitalCommCStarAlgebra
{S : Type u_1}
{A : Type u_2}
[NonUnitalCommCStarAlgebra A]
[SetLike S A]
[NonUnitalSubringClass S A]
[SMulMemClass S ℂ A]
[StarMemClass S A]
(s : S)
[h_closed : IsClosed ↑s]
:
Equations
- NonUnitalStarSubalgebra.nonUnitalCommCStarAlgebra s = NonUnitalCommCStarAlgebra.mk
Equations
- instCommCStarAlgebraComplex = CommCStarAlgebra.mk
instance
instNonUnitalCStarAlgebraForall
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[(i : ι) → NonUnitalCStarAlgebra (A i)]
:
NonUnitalCStarAlgebra ((i : ι) → A i)
Equations
- instNonUnitalCStarAlgebraForall = NonUnitalCStarAlgebra.mk
instance
instNonUnitalCommCStarAlgebraForall
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[(i : ι) → NonUnitalCommCStarAlgebra (A i)]
:
NonUnitalCommCStarAlgebra ((i : ι) → A i)
Equations
- instNonUnitalCommCStarAlgebraForall = NonUnitalCommCStarAlgebra.mk
noncomputable instance
instCStarAlgebraForall
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[(i : ι) → CStarAlgebra (A i)]
:
CStarAlgebra ((i : ι) → A i)
Equations
- instCStarAlgebraForall = CStarAlgebra.mk
noncomputable instance
instCommCStarAlgebraForall
{ι : Type u_1}
{A : ι → Type u_2}
[Fintype ι]
[(i : ι) → CommCStarAlgebra (A i)]
:
CommCStarAlgebra ((i : ι) → A i)
Equations
- instCommCStarAlgebraForall = CommCStarAlgebra.mk
instance
instNonUnitalCStarAlgebraProd
{A : Type u_1}
{B : Type u_2}
[NonUnitalCStarAlgebra A]
[NonUnitalCStarAlgebra B]
:
NonUnitalCStarAlgebra (A × B)
Equations
- instNonUnitalCStarAlgebraProd = NonUnitalCStarAlgebra.mk
instance
instNonUnitalCommCStarAlgebraProd
{A : Type u_1}
{B : Type u_2}
[NonUnitalCommCStarAlgebra A]
[NonUnitalCommCStarAlgebra B]
:
NonUnitalCommCStarAlgebra (A × B)
Equations
- instNonUnitalCommCStarAlgebraProd = NonUnitalCommCStarAlgebra.mk
noncomputable instance
instCStarAlgebraProd
{A : Type u_1}
{B : Type u_2}
[CStarAlgebra A]
[CStarAlgebra B]
:
CStarAlgebra (A × B)
Equations
- instCStarAlgebraProd = CStarAlgebra.mk
noncomputable instance
instCommCStarAlgebraProd
{A : Type u_1}
{B : Type u_2}
[CommCStarAlgebra A]
[CommCStarAlgebra B]
:
CommCStarAlgebra (A × B)
Equations
- instCommCStarAlgebraProd = CommCStarAlgebra.mk