Documentation

Mathlib.Analysis.CStarAlgebra.Classes

Classes of C⋆-algebras #

This file defines classes for complex C⋆-algebras. These are (unital or non-unital, commutative or noncommutative) Banach algebra over with an antimultiplicative conjugate-linear involution (star) satisfying the C⋆-identity ∥star x * x∥ = ∥x∥ ^ 2.

Notes #

These classes are not defined in Mathlib.Analysis.CStarAlgebra.Basic because they require heavier imports.

The class of non-unital (complex) C⋆-algebras.

Instances

    The class of non-unital commutative (complex) C⋆-algebras.

    Instances

      The class of unital (complex) C⋆-algebras.

      Instances
        class CommCStarAlgebra (A : Type u_1) extends NormedCommRing A, CStarAlgebra A :
        Type u_1

        The class of unital commutative (complex) C⋆-algebras.

        Instances
          @[instance 100]
          Equations
          noncomputable instance StarSubalgebra.cstarAlgebra {S : Type u_1} {A : Type u_2} [CStarAlgebra A] [SetLike S A] [SubringClass S A] [SMulMemClass S A] [StarMemClass S A] (s : S) [h_closed : IsClosed s] :
          Equations
          noncomputable instance StarSubalgebra.commCStarAlgebra {S : Type u_1} {A : Type u_2} [CommCStarAlgebra A] [SetLike S A] [SubringClass S A] [SMulMemClass S A] [StarMemClass S A] (s : S) [h_closed : IsClosed s] :
          Equations
          noncomputable instance NonUnitalStarSubalgebra.nonUnitalCStarAlgebra {S : Type u_1} {A : Type u_2} [NonUnitalCStarAlgebra A] [SetLike S A] [NonUnitalSubringClass S A] [SMulMemClass S A] [StarMemClass S A] (s : S) [h_closed : IsClosed s] :
          Equations
          Equations
          Equations
          instance instNonUnitalCStarAlgebraForall {ι : Type u_1} {A : ιType u_2} [Fintype ι] [(i : ι) → NonUnitalCStarAlgebra (A i)] :
          NonUnitalCStarAlgebra ((i : ι) → A i)
          Equations
          • instNonUnitalCStarAlgebraForall = NonUnitalCStarAlgebra.mk
          instance instNonUnitalCommCStarAlgebraForall {ι : Type u_1} {A : ιType u_2} [Fintype ι] [(i : ι) → NonUnitalCommCStarAlgebra (A i)] :
          NonUnitalCommCStarAlgebra ((i : ι) → A i)
          Equations
          • instNonUnitalCommCStarAlgebraForall = NonUnitalCommCStarAlgebra.mk
          noncomputable instance instCStarAlgebraForall {ι : Type u_1} {A : ιType u_2} [Fintype ι] [(i : ι) → CStarAlgebra (A i)] :
          CStarAlgebra ((i : ι) → A i)
          Equations
          • instCStarAlgebraForall = CStarAlgebra.mk
          noncomputable instance instCommCStarAlgebraForall {ι : Type u_1} {A : ιType u_2} [Fintype ι] [(i : ι) → CommCStarAlgebra (A i)] :
          CommCStarAlgebra ((i : ι) → A i)
          Equations
          • instCommCStarAlgebraForall = CommCStarAlgebra.mk
          Equations
          • instNonUnitalCStarAlgebraProd = NonUnitalCStarAlgebra.mk
          Equations
          • instNonUnitalCommCStarAlgebraProd = NonUnitalCommCStarAlgebra.mk
          noncomputable instance instCStarAlgebraProd {A : Type u_1} {B : Type u_2} [CStarAlgebra A] [CStarAlgebra B] :
          Equations
          • instCStarAlgebraProd = CStarAlgebra.mk
          noncomputable instance instCommCStarAlgebraProd {A : Type u_1} {B : Type u_2} [CommCStarAlgebra A] [CommCStarAlgebra B] :
          Equations
          • instCommCStarAlgebraProd = CommCStarAlgebra.mk