Documentation

Mathlib.RingTheory.NonUnitalSubring.Defs

NonUnitalSubrings #

Let R be a non-unital ring. This file defines the "bundled" non-unital subring type NonUnitalSubring R, a type whose terms correspond to non-unital subrings of R. This is the preferred way to talk about non-unital subrings in mathlib.

Main definitions #

Notation used here:

(R : Type u) [NonUnitalRing R] (S : Type u) [NonUnitalRing S] (f g : R →ₙ+* S) (A : NonUnitalSubring R) (B : NonUnitalSubring S) (s : Set R)

Implementation notes #

A non-unital subring is implemented as a NonUnitalSubsemiring which is also an additive subgroup.

Lattice inclusion (e.g. and ) is used rather than set notation ( and ), although is defined as membership of a non-unital subring's underlying set.

Tags #

non-unital subring

NonUnitalSubringClass S R states that S is a type of subsets s ⊆ R that are both a multiplicative submonoid and an additive subgroup.

Instances
    @[instance 100]
    Equations
    • =
    @[instance 75]

    A non-unital subring of a non-unital ring inherits a non-unital ring structure

    Equations
    @[instance 75]

    A non-unital subring of a non-unital ring inherits a non-unital ring structure

    Equations
    @[instance 75]

    A non-unital subring of a NonUnitalCommRing is a NonUnitalCommRing.

    Equations
    def NonUnitalSubringClass.subtype {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [SetLike S R] [hSR : NonUnitalSubringClass S R] (s : S) :
    s →ₙ+* R

    The natural non-unital ring hom from a non-unital subring of a non-unital ring R to R.

    Equations
    Instances For
      @[simp]
      theorem NonUnitalSubringClass.coe_subtype {R : Type u} {S : Type v} [NonUnitalNonAssocRing R] [SetLike S R] [hSR : NonUnitalSubringClass S R] (s : S) :
      (NonUnitalSubringClass.subtype s) = Subtype.val

      NonUnitalSubring R is the type of non-unital subrings of R. A non-unital subring of R is a subset s that is a multiplicative subsemigroup and an additive subgroup. Note in particular that it shares the same 0 as R.

      Instances For

        The underlying submonoid of a NonUnitalSubring.

        Equations
        • s.toSubsemigroup = { carrier := s.carrier, mul_mem' := }
        Instances For
          Equations
          • NonUnitalSubring.instSetLike = { coe := fun (s : NonUnitalSubring R) => s.carrier, coe_injective' := }
          theorem NonUnitalSubring.mem_carrier {R : Type u} [NonUnitalNonAssocRing R] {s : NonUnitalSubring R} {x : R} :
          x s.toNonUnitalSubsemiring x s
          @[simp]
          theorem NonUnitalSubring.mem_mk {R : Type u} [NonUnitalNonAssocRing R] {S : NonUnitalSubsemiring R} {x : R} (h : ∀ {x : R}, x S.carrier-x S.carrier) :
          x { toNonUnitalSubsemiring := S, neg_mem' := h } x S
          @[simp]
          theorem NonUnitalSubring.coe_set_mk {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubsemiring R) (h : ∀ {x : R}, x S.carrier-x S.carrier) :
          { toNonUnitalSubsemiring := S, neg_mem' := h } = S
          @[simp]
          theorem NonUnitalSubring.mk_le_mk {R : Type u} [NonUnitalNonAssocRing R] {S S' : NonUnitalSubsemiring R} (h : ∀ {x : R}, x S.carrier-x S.carrier) (h' : ∀ {x : R}, x S'.carrier-x S'.carrier) :
          { toNonUnitalSubsemiring := S, neg_mem' := h } { toNonUnitalSubsemiring := S', neg_mem' := h' } S S'
          theorem NonUnitalSubring.ext {R : Type u} [NonUnitalNonAssocRing R] {S T : NonUnitalSubring R} (h : ∀ (x : R), x S x T) :
          S = T

          Two non-unital subrings are equal if they have the same elements.

          def NonUnitalSubring.copy {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubring R) (s : Set R) (hs : s = S) :

          Copy of a non-unital subring with a new carrier equal to the old one. Useful to fix definitional equalities.

          Equations
          • S.copy s hs = { carrier := s, add_mem' := , zero_mem' := , mul_mem' := , neg_mem' := }
          Instances For
            @[simp]
            theorem NonUnitalSubring.coe_copy {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubring R) (s : Set R) (hs : s = S) :
            (S.copy s hs) = s
            theorem NonUnitalSubring.copy_eq {R : Type u} [NonUnitalNonAssocRing R] (S : NonUnitalSubring R) (s : Set R) (hs : s = S) :
            S.copy s hs = S
            theorem NonUnitalSubring.toNonUnitalSubsemiring_strictMono {R : Type u} [NonUnitalNonAssocRing R] :
            StrictMono NonUnitalSubring.toNonUnitalSubsemiring
            theorem NonUnitalSubring.toNonUnitalSubsemiring_mono {R : Type u} [NonUnitalNonAssocRing R] :
            Monotone NonUnitalSubring.toNonUnitalSubsemiring
            theorem NonUnitalSubring.toAddSubgroup_strictMono {R : Type u} [NonUnitalNonAssocRing R] :
            StrictMono NonUnitalSubring.toAddSubgroup
            theorem NonUnitalSubring.toAddSubgroup_mono {R : Type u} [NonUnitalNonAssocRing R] :
            Monotone NonUnitalSubring.toAddSubgroup
            theorem NonUnitalSubring.toSubsemigroup_strictMono {R : Type u} [NonUnitalNonAssocRing R] :
            StrictMono NonUnitalSubring.toSubsemigroup
            theorem NonUnitalSubring.toSubsemigroup_mono {R : Type u} [NonUnitalNonAssocRing R] :
            Monotone NonUnitalSubring.toSubsemigroup
            def NonUnitalSubring.mk' {R : Type u} [NonUnitalNonAssocRing R] (s : Set R) (sm : Subsemigroup R) (sa : AddSubgroup R) (hm : sm = s) (ha : sa = s) :

            Construct a NonUnitalSubring R from a set s, a subsemigroup sm, and an additive subgroup sa such that x ∈ s ↔ x ∈ sm ↔ x ∈ sa.

            Equations
            • NonUnitalSubring.mk' s sm sa hm ha = { carrier := (sm.copy s ).carrier, add_mem' := , zero_mem' := , mul_mem' := , neg_mem' := }
            Instances For
              @[simp]
              theorem NonUnitalSubring.coe_mk' {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
              (NonUnitalSubring.mk' s sm sa hm ha) = s
              @[simp]
              theorem NonUnitalSubring.mem_mk' {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) {x : R} :
              x NonUnitalSubring.mk' s sm sa hm ha x s
              @[simp]
              theorem NonUnitalSubring.mk'_toSubsemigroup {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
              (NonUnitalSubring.mk' s sm sa hm ha).toSubsemigroup = sm
              @[simp]
              theorem NonUnitalSubring.mk'_toAddSubgroup {R : Type u} [NonUnitalNonAssocRing R] {s : Set R} {sm : Subsemigroup R} (hm : sm = s) {sa : AddSubgroup R} (ha : sa = s) :
              (NonUnitalSubring.mk' s sm sa hm ha).toAddSubgroup = sa

              A non-unital subring contains the ring's 0.

              theorem NonUnitalSubring.mul_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x y : R} :
              x sy sx * y s

              A non-unital subring is closed under multiplication.

              theorem NonUnitalSubring.add_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x y : R} :
              x sy sx + y s

              A non-unital subring is closed under addition.

              theorem NonUnitalSubring.neg_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x : R} :
              x s-x s

              A non-unital subring is closed under negation.

              theorem NonUnitalSubring.sub_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x y : R} (hx : x s) (hy : y s) :
              x - y s

              A non-unital subring is closed under subtraction

              A non-unital subring of a non-unital ring inherits a non-unital ring structure

              Equations
              theorem NonUnitalSubring.zsmul_mem {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x : R} (hx : x s) (n : ) :
              n x s
              @[simp]
              theorem NonUnitalSubring.val_add {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) (x y : s) :
              (x + y) = x + y
              @[simp]
              theorem NonUnitalSubring.val_neg {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) (x : s) :
              (-x) = -x
              @[simp]
              theorem NonUnitalSubring.val_mul {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) (x y : s) :
              (x * y) = x * y
              theorem NonUnitalSubring.coe_eq_zero_iff {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) {x : s} :
              x = 0 x = 0

              A non-unital subring of a NonUnitalCommRing is a NonUnitalCommRing.

              Equations

              Partial order #

              @[simp]
              theorem NonUnitalSubring.mem_toSubsemigroup {R : Type u} [NonUnitalNonAssocRing R] {s : NonUnitalSubring R} {x : R} :
              x s.toSubsemigroup x s
              @[simp]
              theorem NonUnitalSubring.coe_toSubsemigroup {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) :
              s.toSubsemigroup = s
              @[simp]
              theorem NonUnitalSubring.mem_toAddSubgroup {R : Type u} [NonUnitalNonAssocRing R] {s : NonUnitalSubring R} {x : R} :
              x s.toAddSubgroup x s
              @[simp]
              theorem NonUnitalSubring.coe_toAddSubgroup {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) :
              s.toAddSubgroup = s
              @[simp]
              theorem NonUnitalSubring.mem_toNonUnitalSubsemiring {R : Type u} [NonUnitalNonAssocRing R] {s : NonUnitalSubring R} {x : R} :
              x s.toNonUnitalSubsemiring x s
              @[simp]
              theorem NonUnitalSubring.coe_toNonUnitalSubsemiring {R : Type u} [NonUnitalNonAssocRing R] (s : NonUnitalSubring R) :
              s.toNonUnitalSubsemiring = s
              def NonUnitalSubring.inclusion {R : Type u} [NonUnitalNonAssocRing R] {S T : NonUnitalSubring R} (h : S T) :
              S →ₙ+* T

              The ring homomorphism associated to an inclusion of NonUnitalSubrings.

              Equations
              Instances For