Documentation

Mathlib.Analysis.CStarAlgebra.ContinuousFunctionalCalculus.Unique

Uniqueness of the continuous functional calculus #

Let s : Set 𝕜 be compact where 𝕜 is either or . By the Stone-Weierstrass theorem, the (star) subalgebra generated by polynomial functions on s is dense in C(s, 𝕜). Moreover, this star subalgebra is generated by X : 𝕜[X] (i.e., ContinuousMap.restrict s (.id 𝕜)) alone. Consequently, any continuous star 𝕜-algebra homomorphism with domain C(s, 𝕜), is uniquely determined by its value on X : 𝕜[X].

The same is true for 𝕜 := ℝ≥0, so long as the algebra A is an -algebra, which we establish by upgrading a map C((s : Set ℝ≥0), ℝ≥0) →⋆ₐ[ℝ≥0] A to C(((↑) '' s : Set ℝ), ℝ) →⋆ₐ[ℝ] A in the natural way, and then applying the uniqueness for -algebra homomorphisms.

This is the reason the ContinuousMap.UniqueHom class exists in the first place, as opposed to simply appealing directly to Stone-Weierstrass to prove StarAlgHom.ext_continuousMap.

@[instance 100]
instance RCLike.instContinuousMapUniqueHom {𝕜 : Type u_1} {A : Type u_2} [RCLike 𝕜] [TopologicalSpace A] [T2Space A] [Ring A] [StarRing A] [Algebra 𝕜 A] :
noncomputable def ContinuousMap.toNNReal {X : Type u_1} [TopologicalSpace X] (f : C(X, )) :

This map sends f : C(X, ℝ) to Real.toNNReal ∘ f, bundled as a continuous map C(X, ℝ≥0).

Equations
Instances For
    @[simp]
    theorem ContinuousMap.toNNReal_apply {X : Type u_1} [TopologicalSpace X] (f : C(X, )) (x : X) :
    f.toNNReal x = (f x).toNNReal

    Given a star ℝ≥0-algebra homomorphism φ from C(X, ℝ≥0) into an -algebra A, this is the unique extension of φ from C(X, ℝ) to A as a star -algebra homomorphism.

    Equations
    Instances For

      This map sends f : C(X, ℝ) to Real.toNNReal ∘ f, bundled as a continuous map C(X, ℝ≥0).

      Equations
      Instances For
        @[simp]

        Given a non-unital star ℝ≥0-algebra homomorphism φ from C(X, ℝ≥0)₀ into a non-unital -algebra A, this is the unique extension of φ from C(X, ℝ)₀ to A as a non-unital star -algebra homomorphism.

        Equations
        Instances For
          theorem NonUnitalStarAlgHomClass.map_cfcₙ {F : Type u_1} {R : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} {p : AProp} {q : BProp} [CommSemiring R] [Nontrivial R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [CommRing S] [Algebra R S] [NonUnitalRing A] [StarRing A] [TopologicalSpace A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [NonUnitalRing B] [StarRing B] [TopologicalSpace B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B] [Module S A] [Module S B] [IsScalarTower R S A] [IsScalarTower R S B] [NonUnitalContinuousFunctionalCalculus R p] [NonUnitalContinuousFunctionalCalculus R q] [ContinuousMapZero.UniqueHom R B] [FunLike F A B] [NonUnitalAlgHomClass F S A B] [StarHomClass F A B] (φ : F) (f : RR) (a : A) (hf : ContinuousOn f (quasispectrum R a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (hφ : Continuous φ := by fun_prop) (ha : p a := by cfc_tac) (hφa : q (φ a) := by cfc_tac) :
          φ (cfcₙ f a) = cfcₙ f (φ a)

          Non-unital star algebra homomorphisms commute with the non-unital continuous functional calculus.

          theorem NonUnitalStarAlgHom.map_cfcₙ {R : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} {p : AProp} {q : BProp} [CommSemiring R] [Nontrivial R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [CommRing S] [Algebra R S] [NonUnitalRing A] [StarRing A] [TopologicalSpace A] [Module R A] [IsScalarTower R A A] [SMulCommClass R A A] [NonUnitalRing B] [StarRing B] [TopologicalSpace B] [Module R B] [IsScalarTower R B B] [SMulCommClass R B B] [Module S A] [Module S B] [IsScalarTower R S A] [IsScalarTower R S B] [NonUnitalContinuousFunctionalCalculus R p] [NonUnitalContinuousFunctionalCalculus R q] [ContinuousMapZero.UniqueHom R B] (φ : A →⋆ₙₐ[S] B) (f : RR) (a : A) (hf : ContinuousOn f (quasispectrum R a) := by cfc_cont_tac) (hf₀ : f 0 = 0 := by cfc_zero_tac) (hφ : Continuous φ := by fun_prop) (ha : p a := by cfc_tac) (hφa : q (φ a) := by cfc_tac) :
          φ (cfcₙ f a) = cfcₙ f (φ a)

          Non-unital star algebra homomorphisms commute with the non-unital continuous functional calculus. This version is specialized to A →⋆ₙₐ[S] B to allow for dot notation.

          theorem StarAlgHomClass.map_cfc {F : Type u_1} {R : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} {p : AProp} {q : BProp} [CommSemiring R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Ring A] [StarRing A] [TopologicalSpace A] [Algebra R A] [Ring B] [StarRing B] [TopologicalSpace B] [Algebra R B] [CommSemiring S] [Algebra R S] [Algebra S A] [Algebra S B] [IsScalarTower R S A] [IsScalarTower R S B] [ContinuousFunctionalCalculus R p] [ContinuousFunctionalCalculus R q] [ContinuousMap.UniqueHom R B] [FunLike F A B] [AlgHomClass F S A B] [StarHomClass F A B] (φ : F) (f : RR) (a : A) (hf : ContinuousOn f (spectrum R a) := by cfc_cont_tac) (hφ : Continuous φ := by fun_prop) (ha : p a := by cfc_tac) (hφa : q (φ a) := by cfc_tac) :
          φ (cfc f a) = cfc f (φ a)

          Star algebra homomorphisms commute with the continuous functional calculus.

          theorem StarAlgHom.map_cfc {R : Type u_2} {S : Type u_3} {A : Type u_4} {B : Type u_5} {p : AProp} {q : BProp} [CommSemiring R] [StarRing R] [MetricSpace R] [IsTopologicalSemiring R] [ContinuousStar R] [Ring A] [StarRing A] [TopologicalSpace A] [Algebra R A] [Ring B] [StarRing B] [TopologicalSpace B] [Algebra R B] [CommSemiring S] [Algebra R S] [Algebra S A] [Algebra S B] [IsScalarTower R S A] [IsScalarTower R S B] [ContinuousFunctionalCalculus R p] [ContinuousFunctionalCalculus R q] [ContinuousMap.UniqueHom R B] (φ : A →⋆ₐ[S] B) (f : RR) (a : A) (hf : ContinuousOn f (spectrum R a) := by cfc_cont_tac) (hφ : Continuous φ := by fun_prop) (ha : p a := by cfc_tac) (hφa : q (φ a) := by cfc_tac) :
          φ (cfc f a) = cfc f (φ a)

          Star algebra homomorphisms commute with the continuous functional calculus. This version is specialized to A →⋆ₐ[S] B to allow for dot notation.