Documentation

Mathlib.Analysis.Calculus.Conformal.NormedSpace

Conformal Maps #

A continuous linear map between real normed spaces X and Y is ConformalAt some point x if it is real differentiable at that point and its differential is a conformal linear map.

Main definitions #

Main results #

In Analysis.Calculus.Conformal.InnerProduct:

In Geometry.Euclidean.Angle.Unoriented.Conformal:

Tags #

conformal

Warning #

The definition of conformality in this file does NOT require the maps to be orientation-preserving. Maps such as the complex conjugate are considered to be conformal.

def ConformalAt {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] (f : XY) (x : X) :

A map f is said to be conformal if it has a conformal differential f'.

Equations
Instances For
    theorem conformalAt_const_smul {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {c : } (h : c 0) (x : X) :
    ConformalAt (fun (x' : X) => c x') x
    theorem Subsingleton.conformalAt {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] [Subsingleton X] (f : XY) (x : X) :

    A function is a conformal map if and only if its differential is a conformal linear map

    theorem ConformalAt.differentiableAt {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] {f : XY} {x : X} (h : ConformalAt f x) :
    theorem ConformalAt.congr {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] {f g : XY} {x : X} {u : Set X} (hx : x u) (hu : IsOpen u) (hf : ConformalAt f x) (h : xu, g x = f x) :
    theorem ConformalAt.comp {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedAddCommGroup Z] [NormedSpace X] [NormedSpace Y] [NormedSpace Z] {f : XY} {g : YZ} (x : X) (hg : ConformalAt g (f x)) (hf : ConformalAt f x) :
    theorem ConformalAt.const_smul {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] {f : XY} {x : X} {c : } (hc : c 0) (hf : ConformalAt f x) :
    def Conformal {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] (f : XY) :

    A map f is conformal if it's conformal at every point.

    Equations
    Instances For
      theorem conformal_const_smul {X : Type u_1} [NormedAddCommGroup X] [NormedSpace X] {c : } (h : c 0) :
      Conformal fun (x : X) => c x
      theorem Conformal.conformalAt {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] {f : XY} (h : Conformal f) (x : X) :
      theorem Conformal.comp {X : Type u_1} {Y : Type u_2} {Z : Type u_3} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedAddCommGroup Z] [NormedSpace X] [NormedSpace Y] [NormedSpace Z] {f : XY} {g : YZ} (hf : Conformal f) (hg : Conformal g) :
      theorem Conformal.const_smul {X : Type u_1} {Y : Type u_2} [NormedAddCommGroup X] [NormedAddCommGroup Y] [NormedSpace X] [NormedSpace Y] {f : XY} (hf : Conformal f) {c : } (hc : c 0) :