FrΓ©chet derivative of constant functions #
This file contains the usual formulas (and existence assertions) for the derivative of constant
functions, including various special cases such as the functions 0
, 1
, Nat.cast n
,
Int.cast z
, and other numerals.
Tags #
derivative, differentiable, FrΓ©chet, calculus
theorem
hasStrictFDerivAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
:
HasStrictFDerivAt (fun (x : E) => c) 0 x
theorem
hasStrictFDerivAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
:
HasStrictFDerivAt 0 0 x
theorem
hasStrictFDerivAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
:
HasStrictFDerivAt 1 0 x
theorem
hasStrictFDerivAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
:
HasStrictFDerivAt (βn) 0 x
theorem
hasStrictFDerivAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
:
HasStrictFDerivAt (βz) 0 x
theorem
hasStrictFDerivAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
:
HasStrictFDerivAt (OfNat.ofNat n) 0 x
theorem
hasFDerivAtFilter_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (fun (x : E) => c) 0 x L
theorem
hasFDerivAtFilter_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
(L : Filter E)
:
HasFDerivAtFilter 0 0 x L
theorem
hasFDerivAtFilter_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
(L : Filter E)
:
HasFDerivAtFilter 1 0 x L
theorem
hasFDerivAtFilter_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (βn) 0 x L
theorem
hasFDerivAtFilter_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (βz) 0 x L
theorem
hasFDerivAtFilter_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
(L : Filter E)
:
HasFDerivAtFilter (OfNat.ofNat n) 0 x L
theorem
hasFDerivWithinAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
(s : Set E)
:
HasFDerivWithinAt (fun (x : E) => c) 0 s x
theorem
hasFDerivWithinAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
(s : Set E)
:
HasFDerivWithinAt 0 0 s x
theorem
hasFDerivWithinAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
(s : Set E)
:
HasFDerivWithinAt 1 0 s x
theorem
hasFDerivWithinAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
(s : Set E)
:
HasFDerivWithinAt (βn) 0 s x
theorem
hasFDerivWithinAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
(s : Set E)
:
HasFDerivWithinAt (βz) 0 s x
theorem
hasFDerivWithinAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
(s : Set E)
:
HasFDerivWithinAt (OfNat.ofNat n) 0 s x
theorem
hasFDerivAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
(x : E)
:
HasFDerivAt (fun (x : E) => c) 0 x
theorem
hasFDerivAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
:
HasFDerivAt 0 0 x
theorem
hasFDerivAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
:
HasFDerivAt 1 0 x
theorem
hasFDerivAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
:
HasFDerivAt (βn) 0 x
theorem
hasFDerivAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
:
HasFDerivAt (βz) 0 x
theorem
hasFDerivAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
:
HasFDerivAt (OfNat.ofNat n) 0 x
@[simp]
theorem
differentiableAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
(c : F)
:
DifferentiableAt π (fun (x : E) => c) x
@[simp]
theorem
differentiableAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(x : E)
:
DifferentiableAt π 0 x
@[simp]
theorem
differentiableAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
(x : E)
:
DifferentiableAt π 1 x
@[simp]
theorem
differentiableAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
(x : E)
:
DifferentiableAt π (βn) x
@[simp]
theorem
differentiableAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
(x : E)
:
DifferentiableAt π (βz) x
@[simp]
theorem
differentiableAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
(x : E)
:
DifferentiableAt π (OfNat.ofNat n) x
theorem
differentiableWithinAt_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
(c : F)
:
DifferentiableWithinAt π (fun (x : E) => c) s x
theorem
differentiableWithinAt_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
:
DifferentiableWithinAt π 0 s x
theorem
differentiableWithinAt_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
[One F]
:
DifferentiableWithinAt π 1 s x
theorem
differentiableWithinAt_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
[NatCast F]
(n : β)
:
DifferentiableWithinAt π (βn) s x
theorem
differentiableWithinAt_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
[IntCast F]
(z : β€)
:
DifferentiableWithinAt π (βz) s x
theorem
differentiableWithinAt_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
(n : β)
[OfNat F n]
:
DifferentiableWithinAt π (OfNat.ofNat n) s x
theorem
fderivWithin_const_apply
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
{s : Set E}
(c : F)
:
@[simp]
theorem
fderivWithin_fun_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(c : F)
:
@[simp]
theorem
fderivWithin_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(c : F)
:
@[simp]
theorem
fderivWithin_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
:
@[simp]
theorem
fderivWithin_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[One F]
:
@[simp]
theorem
fderivWithin_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[NatCast F]
(n : β)
:
@[simp]
theorem
fderivWithin_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[IntCast F]
(z : β€)
:
@[simp]
theorem
fderivWithin_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(n : β)
[OfNat F n]
:
theorem
fderiv_const_apply
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{x : E}
(c : F)
:
@[simp]
theorem
fderiv_fun_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
:
@[simp]
theorem
fderiv_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
:
@[simp]
theorem
fderiv_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
:
@[simp]
theorem
fderiv_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
:
@[simp]
theorem
fderiv_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
:
@[simp]
theorem
fderiv_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
:
@[simp]
theorem
fderiv_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
:
@[simp]
theorem
differentiable_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(c : F)
:
Differentiable π fun (x : E) => c
@[simp]
theorem
differentiable_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
:
Differentiable π 0
@[simp]
theorem
differentiable_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[One F]
:
Differentiable π 1
@[simp]
theorem
differentiable_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[NatCast F]
(n : β)
:
Differentiable π βn
@[simp]
theorem
differentiable_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[IntCast F]
(z : β€)
:
Differentiable π βz
@[simp]
theorem
differentiable_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(n : β)
[OfNat F n]
:
Differentiable π (OfNat.ofNat n)
@[simp]
theorem
differentiableOn_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(c : F)
:
DifferentiableOn π (fun (x : E) => c) s
@[simp]
theorem
differentiableOn_zero
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
:
DifferentiableOn π 0 s
@[simp]
theorem
differentiableOn_one
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[One F]
:
DifferentiableOn π 1 s
@[simp]
theorem
differentiableOn_natCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[NatCast F]
(n : β)
:
DifferentiableOn π (βn) s
@[simp]
theorem
differentiableOn_intCast
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
[IntCast F]
(z : β€)
:
DifferentiableOn π (βz) s
@[simp]
theorem
differentiableOn_ofNat
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{s : Set E}
(n : β)
[OfNat F n]
:
DifferentiableOn π (OfNat.ofNat n) s
theorem
hasFDerivWithinAt_singleton
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
(f : E β F)
(x : E)
:
HasFDerivWithinAt f 0 {x} x
theorem
hasFDerivAt_of_subsingleton
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
[h : Subsingleton E]
(f : E β F)
(x : E)
:
HasFDerivAt f 0 x
theorem
differentiableOn_empty
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
:
DifferentiableOn π f β
theorem
differentiableOn_singleton
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
:
DifferentiableOn π f {x}
theorem
Set.Subsingleton.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(hs : s.Subsingleton)
:
DifferentiableOn π f s
theorem
hasFDerivAt_zero_of_eventually_const
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(c : F)
(hf : f =αΆ [nhds x] fun (x : E) => c)
:
HasFDerivAt f 0 x
theorem
differentiableWithinAt_of_isInvertible_fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(hf : (fderivWithin π f s x).IsInvertible)
:
DifferentiableWithinAt π f s x
theorem
differentiableAt_of_isInvertible_fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(hf : (fderiv π f x).IsInvertible)
:
DifferentiableAt π f x
Support of derivatives #
theorem
HasStrictFDerivAt.of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasStrictFDerivAt f 0 x
@[deprecated HasStrictFDerivAt.of_notMem_tsupport (since := "2025-05-24")]
theorem
HasStrictFDerivAt.of_nmem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasStrictFDerivAt f 0 x
Alias of HasStrictFDerivAt.of_notMem_tsupport
.
theorem
HasFDerivAt.of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasFDerivAt f 0 x
@[deprecated HasFDerivAt.of_notMem_tsupport (since := "2025-05-24")]
theorem
HasFDerivAt.of_nmem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
HasFDerivAt f 0 x
Alias of HasFDerivAt.of_notMem_tsupport
.
theorem
HasFDerivWithinAt.of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
{x : E}
(h : x β tsupport f)
:
HasFDerivWithinAt f 0 s x
@[deprecated HasFDerivWithinAt.of_notMem_tsupport (since := "2025-05-23")]
theorem
HasFDerivWithinAt.of_not_mem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
{x : E}
(h : x β tsupport f)
:
HasFDerivWithinAt f 0 s x
Alias of HasFDerivWithinAt.of_notMem_tsupport
.
theorem
fderiv_of_notMem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
@[deprecated fderiv_of_notMem_tsupport (since := "2025-05-23")]
theorem
fderiv_of_not_mem_tsupport
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : x β tsupport f)
:
Alias of fderiv_of_notMem_tsupport
.
theorem
support_fderiv_subset
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
:
theorem
tsupport_fderiv_subset
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
:
theorem
HasCompactSupport.fderiv
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : HasCompactSupport f)
:
HasCompactSupport (fderiv π f)
theorem
HasCompactSupport.fderiv_apply
(π : Type u_4)
{E : Type u_5}
{F : Type u_6}
[NontriviallyNormedField π]
[NormedAddCommGroup E]
[NormedSpace π E]
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(hf : HasCompactSupport f)
(v : E)
:
HasCompactSupport fun (x : E) => (fderiv π f x) v