Documentation

Mathlib.Analysis.Calculus.ContDiff.Deriv

Higher differentiability in one dimension #

The general theory of higher derivatives in Mathlib is developed using the FrΓ©chet derivative fderiv; but for maps defined on the field, the one-dimensional derivative deriv is often easier to use. In this file, we reformulate some higher smoothness results in terms of deriv.

Tags #

derivative, differentiability, higher derivative, C^n, multilinear, Taylor series, formal series

theorem contDiffOn_succ_iff_derivWithin {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {n : WithTop β„•βˆž} {f : π•œ β†’ F} {s : Set π•œ} (hs : UniqueDiffOn π•œ s) :
ContDiffOn π•œ (n + 1) f s ↔ DifferentiableOn π•œ f s ∧ (n = ⊀ β†’ AnalyticOn π•œ f s) ∧ ContDiffOn π•œ n (derivWithin f s) s

A function is C^(n + 1) on a domain with unique derivatives if and only if it is differentiable there, and its derivative (formulated with derivWithin) is C^n.

theorem contDiffOn_infty_iff_derivWithin {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} {s : Set π•œ} (hs : UniqueDiffOn π•œ s) :
ContDiffOn π•œ (β†‘βŠ€) f s ↔ DifferentiableOn π•œ f s ∧ ContDiffOn π•œ (β†‘βŠ€) (derivWithin f s) s
theorem contDiffOn_succ_iff_deriv_of_isOpen {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {n : WithTop β„•βˆž} {f : π•œ β†’ F} {s : Set π•œ} (hs : IsOpen s) :
ContDiffOn π•œ (n + 1) f s ↔ DifferentiableOn π•œ f s ∧ (n = ⊀ β†’ AnalyticOn π•œ f s) ∧ ContDiffOn π•œ n (deriv f) s

A function is C^(n + 1) on an open domain if and only if it is differentiable there, and its derivative (formulated with deriv) is C^n.

theorem contDiffOn_infty_iff_deriv_of_isOpen {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} {s : Set π•œ} (hs : IsOpen s) :
ContDiffOn π•œ (β†‘βŠ€) f s ↔ DifferentiableOn π•œ f s ∧ ContDiffOn π•œ (β†‘βŠ€) (deriv f) s
theorem ContDiffOn.derivWithin {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {m n : WithTop β„•βˆž} {f : π•œ β†’ F} {s : Set π•œ} (hf : ContDiffOn π•œ n f s) (hs : UniqueDiffOn π•œ s) (hmn : m + 1 ≀ n) :
ContDiffOn π•œ m (derivWithin f s) s
theorem ContDiffOn.deriv_of_isOpen {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {m n : WithTop β„•βˆž} {f : π•œ β†’ F} {s : Set π•œ} (hf : ContDiffOn π•œ n f s) (hs : IsOpen s) (hmn : m + 1 ≀ n) :
ContDiffOn π•œ m (deriv f) s
theorem ContDiffOn.continuousOn_derivWithin {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {n : WithTop β„•βˆž} {f : π•œ β†’ F} {s : Set π•œ} (h : ContDiffOn π•œ n f s) (hs : UniqueDiffOn π•œ s) (hn : 1 ≀ n) :
theorem ContDiffOn.continuousOn_deriv_of_isOpen {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {n : WithTop β„•βˆž} {f : π•œ β†’ F} {s : Set π•œ} (h : ContDiffOn π•œ n f s) (hs : IsOpen s) (hn : 1 ≀ n) :
theorem ContDiffWithinAt.derivWithin {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {m n : WithTop β„•βˆž} {f : π•œ β†’ F} {s : Set π•œ} {x : π•œ} (H : ContDiffWithinAt π•œ n f s x) (hs : UniqueDiffOn π•œ s) (hmn : m + 1 ≀ n) (hx : x ∈ s) :
ContDiffWithinAt π•œ m (derivWithin f s) s x
theorem contDiff_succ_iff_deriv {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {n : WithTop β„•βˆž} {f : π•œ β†’ F} :
ContDiff π•œ (n + 1) f ↔ Differentiable π•œ f ∧ (n = ⊀ β†’ AnalyticOn π•œ f Set.univ) ∧ ContDiff π•œ n (deriv f)

A function is C^(n + 1) if and only if it is differentiable, and its derivative (formulated in terms of deriv) is C^n.

theorem contDiff_one_iff_deriv {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} :
ContDiff π•œ 1 f ↔ Differentiable π•œ f ∧ Continuous (deriv f)
theorem contDiff_infty_iff_deriv {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} :
ContDiff π•œ (β†‘βŠ€) f ↔ Differentiable π•œ f ∧ ContDiff π•œ (β†‘βŠ€) (deriv f)
theorem ContDiff.continuous_deriv {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {n : WithTop β„•βˆž} {f : π•œ β†’ F} (h : ContDiff π•œ n f) (hn : 1 ≀ n) :
theorem ContDiff.continuous_deriv_one {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} (h : ContDiff π•œ 1 f) :
theorem ContDiff.differentiable_deriv_two {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {f : π•œ β†’ F} (h : ContDiff π•œ 2 f) :
Differentiable π•œ (deriv f)
theorem ContDiffAt.derivWithin {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {m n : WithTop β„•βˆž} {f : π•œ β†’ F} {x : π•œ} (H : ContDiffAt π•œ n f x) (hmn : m + 1 ≀ n) :
ContDiffAt π•œ m (deriv f) x
theorem ContDiff.deriv' {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] {n : WithTop β„•βˆž} {f : π•œ β†’ F} (h : ContDiff π•œ (n + 1) f) :
ContDiff π•œ n (deriv f)
theorem ContDiff.iterate_deriv {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] (n : β„•) {f : π•œ β†’ F} :
ContDiff π•œ (β†‘βŠ€) f β†’ ContDiff π•œ (β†‘βŠ€) (deriv^[n] f)
theorem ContDiff.iterate_deriv' {π•œ : Type u_1} {F : Type u_2} [NontriviallyNormedField π•œ] [NormedAddCommGroup F] [NormedSpace π•œ F] (n k : β„•) {f : π•œ β†’ F} :
ContDiff π•œ (↑(n + k)) f β†’ ContDiff π•œ (↑n) (deriv^[k] f)