Functions differentiable on a domain and continuous on its closure #
Many theorems in complex analysis assume that a function is complex differentiable on a domain and
is continuous on its closure. In this file we define a predicate DiffContOnCl
that expresses
this property and prove basic facts about this predicate.
structure
DiffContOnCl
(๐ : Type u_1)
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
(f : E โ F)
(s : Set E)
:
A predicate saying that a function is differentiable on a set and is continuous on its closure. This is a common assumption in complex analysis.
- differentiableOn : DifferentiableOn ๐ f s
- continuousOn : ContinuousOn f (closure s)
Instances For
theorem
DifferentiableOn.diffContOnCl
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(h : DifferentiableOn ๐ f (closure s))
:
DiffContOnCl ๐ f s
theorem
Differentiable.diffContOnCl
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(h : Differentiable ๐ f)
:
DiffContOnCl ๐ f s
theorem
IsClosed.diffContOnCl_iff
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(hs : IsClosed s)
:
DiffContOnCl ๐ f s โ DifferentiableOn ๐ f s
theorem
diffContOnCl_univ
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
:
DiffContOnCl ๐ f Set.univ โ Differentiable ๐ f
theorem
diffContOnCl_const
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{s : Set E}
{c : F}
:
DiffContOnCl ๐ (fun (x : E) => c) s
theorem
DiffContOnCl.comp
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E โ F}
{s : Set E}
{g : G โ E}
{t : Set G}
(hf : DiffContOnCl ๐ f s)
(hg : DiffContOnCl ๐ g t)
(h : Set.MapsTo g t s)
:
DiffContOnCl ๐ (f โ g) t
theorem
DiffContOnCl.continuousOn_ball
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
[NormedSpace โ E]
{x : E}
{r : โ}
(h : DiffContOnCl ๐ f (Metric.ball x r))
:
ContinuousOn f (Metric.closedBall x r)
theorem
DiffContOnCl.mk_ball
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{x : E}
{r : โ}
(hd : DifferentiableOn ๐ f (Metric.ball x r))
(hc : ContinuousOn f (Metric.closedBall x r))
:
DiffContOnCl ๐ f (Metric.ball x r)
theorem
DiffContOnCl.differentiableAt
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
{x : E}
(h : DiffContOnCl ๐ f s)
(hs : IsOpen s)
(hx : x โ s)
:
DifferentiableAt ๐ f x
theorem
DiffContOnCl.differentiableAt'
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
{x : E}
(h : DiffContOnCl ๐ f s)
(hx : s โ nhds x)
:
DifferentiableAt ๐ f x
theorem
DiffContOnCl.mono
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s t : Set E}
(h : DiffContOnCl ๐ f s)
(ht : t โ s)
:
DiffContOnCl ๐ f t
theorem
DiffContOnCl.add
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f g : E โ F}
{s : Set E}
(hf : DiffContOnCl ๐ f s)
(hg : DiffContOnCl ๐ g s)
:
DiffContOnCl ๐ (f + g) s
theorem
DiffContOnCl.add_const
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(hf : DiffContOnCl ๐ f s)
(c : F)
:
DiffContOnCl ๐ (fun (x : E) => f x + c) s
theorem
DiffContOnCl.const_add
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(hf : DiffContOnCl ๐ f s)
(c : F)
:
DiffContOnCl ๐ (fun (x : E) => c + f x) s
theorem
DiffContOnCl.neg
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(hf : DiffContOnCl ๐ f s)
:
DiffContOnCl ๐ (-f) s
theorem
DiffContOnCl.sub
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f g : E โ F}
{s : Set E}
(hf : DiffContOnCl ๐ f s)
(hg : DiffContOnCl ๐ g s)
:
DiffContOnCl ๐ (f - g) s
theorem
DiffContOnCl.sub_const
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(hf : DiffContOnCl ๐ f s)
(c : F)
:
DiffContOnCl ๐ (fun (x : E) => f x - c) s
theorem
DiffContOnCl.const_sub
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
(hf : DiffContOnCl ๐ f s)
(c : F)
:
DiffContOnCl ๐ (fun (x : E) => c - f x) s
theorem
DiffContOnCl.const_smul
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{s : Set E}
{R : Type u_5}
[Semiring R]
[Module R F]
[SMulCommClass ๐ R F]
[ContinuousConstSMul R F]
(hf : DiffContOnCl ๐ f s)
(c : R)
:
DiffContOnCl ๐ (c โข f) s
theorem
DiffContOnCl.smul
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{๐' : Type u_5}
[NontriviallyNormedField ๐']
[NormedAlgebra ๐ ๐']
[NormedSpace ๐' F]
[IsScalarTower ๐ ๐' F]
{c : E โ ๐'}
{f : E โ F}
{s : Set E}
(hc : DiffContOnCl ๐ c s)
(hf : DiffContOnCl ๐ f s)
:
DiffContOnCl ๐ (fun (x : E) => c x โข f x) s
theorem
DiffContOnCl.smul_const
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{๐' : Type u_5}
[NontriviallyNormedField ๐']
[NormedAlgebra ๐ ๐']
[NormedSpace ๐' F]
[IsScalarTower ๐ ๐' F]
{c : E โ ๐'}
{s : Set E}
(hc : DiffContOnCl ๐ c s)
(y : F)
:
DiffContOnCl ๐ (fun (x : E) => c x โข y) s
theorem
DiffContOnCl.inv
{๐ : Type u_1}
{E : Type u_2}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedSpace ๐ E]
{s : Set E}
{f : E โ ๐}
(hf : DiffContOnCl ๐ f s)
(hโ : โ x โ closure s, f x โ 0)
:
DiffContOnCl ๐ fโปยน s
theorem
Differentiable.comp_diffContOnCl
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
{G : Type u_4}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
[NormedAddCommGroup G]
[NormedSpace ๐ G]
{f : E โ F}
{g : G โ E}
{t : Set G}
(hf : Differentiable ๐ f)
(hg : DiffContOnCl ๐ g t)
:
DiffContOnCl ๐ (f โ g) t
theorem
DifferentiableOn.diffContOnCl_ball
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[NontriviallyNormedField ๐]
[NormedAddCommGroup E]
[NormedAddCommGroup F]
[NormedSpace ๐ E]
[NormedSpace ๐ F]
{f : E โ F}
{U : Set E}
{c : E}
{R : โ}
(hf : DifferentiableOn ๐ f U)
(hc : Metric.closedBall c R โ U)
:
DiffContOnCl ๐ f (Metric.ball c R)