The derivative of bounded linear maps #
For detailed documentation of the FrΓ©chet derivative,
see the module docstring of Mathlib/Analysis/Calculus/FDeriv/Basic.lean.
This file contains the usual formulas (and existence assertions) for the derivative of bounded linear maps.
Bundled continuous linear maps #
There are currently two variants of these in mathlib, the bundled version
(named ContinuousLinearMap, and denoted E βL[π] F, works for topological vector spaces),
and the unbundled version (with a predicate IsBoundedLinearMap, requires normed spaces).
This section deals with the first form, see below for the unbundled version
theorem
ContinuousLinearMap.hasStrictFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
:
HasStrictFDerivAt (βf) f x
theorem
ContinuousLinearMap.hasFDerivAtFilter
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
{L : Filter E}
:
HasFDerivAtFilter (βf) f x L
theorem
ContinuousLinearMap.hasFDerivWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
{s : Set E}
:
HasFDerivWithinAt (βf) f s x
theorem
ContinuousLinearMap.hasFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
:
HasFDerivAt (βf) f x
@[simp]
theorem
ContinuousLinearMap.differentiableAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
:
DifferentiableAt π (βf) x
theorem
ContinuousLinearMap.differentiableWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
{s : Set E}
:
DifferentiableWithinAt π (βf) s x
@[simp]
theorem
ContinuousLinearMap.differentiable
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
:
Differentiable π βf
theorem
ContinuousLinearMap.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{s : Set E}
:
DifferentiableOn π (βf) s
@[simp]
theorem
ContinuousLinearMap.fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
[ContinuousAdd E]
[ContinuousSMul π E]
[ContinuousAdd F]
[ContinuousSMul π F]
[T2Space F]
:
theorem
ContinuousLinearMap.fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[AddCommGroup E]
[Module π E]
[TopologicalSpace E]
{F : Type u_3}
[AddCommGroup F]
[Module π F]
[TopologicalSpace F]
(f : E βL[π] F)
{x : E}
{s : Set E}
[ContinuousAdd E]
[ContinuousSMul π E]
[ContinuousAdd F]
[ContinuousSMul π F]
[T2Space F]
(hxs : UniqueDiffWithinAt π s x)
:
Unbundled continuous linear maps #
theorem
IsBoundedLinearMap.hasFDerivAtFilter
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{L : Filter E}
(h : IsBoundedLinearMap π f)
:
HasFDerivAtFilter f (toContinuousLinearMap f h) x L
theorem
IsBoundedLinearMap.hasFDerivWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(h : IsBoundedLinearMap π f)
:
HasFDerivWithinAt f (toContinuousLinearMap f h) s x
theorem
IsBoundedLinearMap.hasFDerivAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : IsBoundedLinearMap π f)
:
HasFDerivAt f (toContinuousLinearMap f h) x
theorem
IsBoundedLinearMap.differentiableAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : IsBoundedLinearMap π f)
:
DifferentiableAt π f x
theorem
IsBoundedLinearMap.differentiableWithinAt
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(h : IsBoundedLinearMap π f)
:
DifferentiableWithinAt π f s x
theorem
IsBoundedLinearMap.fderiv
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
(h : IsBoundedLinearMap π f)
:
theorem
IsBoundedLinearMap.fderivWithin
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{x : E}
{s : Set E}
(h : IsBoundedLinearMap π f)
(hxs : UniqueDiffWithinAt π s x)
:
theorem
IsBoundedLinearMap.differentiable
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
(h : IsBoundedLinearMap π f)
:
Differentiable π f
theorem
IsBoundedLinearMap.differentiableOn
{π : Type u_1}
[NontriviallyNormedField π]
{E : Type u_2}
[NormedAddCommGroup E]
[NormedSpace π E]
{F : Type u_3}
[NormedAddCommGroup F]
[NormedSpace π F]
{f : E β F}
{s : Set E}
(h : IsBoundedLinearMap π f)
:
DifferentiableOn π f s