Documentation

Mathlib.Analysis.Calculus.FDeriv.Norm

Differentiability of the norm in a real normed vector space #

This file provides basic results about the differentiability of the norm in a real vector space. Most are of the following kind: if the norm has some differentiability property (DifferentiableAt, ContDiffAt, HasStrictFDerivAt, HasFDerivAt) at x, then so it has at t • x when t ≠ 0.

Main statements #

Tags #

differentiability, norm

theorem ContDiffAt.contDiffAt_norm_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {n : WithTop ℕ∞} {x : E} {t : } (ht : t 0) (h : ContDiffAt n (fun (x : E) => x) x) :
ContDiffAt n (fun (x : E) => x) (t x)
theorem contDiffAt_norm_smul_iff {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {n : WithTop ℕ∞} {x : E} {t : } (ht : t 0) :
ContDiffAt n (fun (x : E) => x) x ContDiffAt n (fun (x : E) => x) (t x)
theorem ContDiffAt.contDiffAt_norm_of_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {n : WithTop ℕ∞} {x : E} {t : } (h : ContDiffAt n (fun (x : E) => x) (t x)) :
ContDiffAt n (fun (x : E) => x) x
theorem HasStrictFDerivAt.hasStrictFDerivAt_norm_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E →L[] } {x : E} {t : } (ht : t 0) (h : HasStrictFDerivAt (fun (x : E) => x) f x) :
HasStrictFDerivAt (fun (x : E) => x) ((SignType.sign t) f) (t x)
theorem HasStrictFDerivAt.hasStrictDerivAt_norm_smul_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E →L[] } {x : E} {t : } (ht : t < 0) (h : HasStrictFDerivAt (fun (x : E) => x) f x) :
HasStrictFDerivAt (fun (x : E) => x) (-f) (t x)
theorem HasStrictFDerivAt.hasStrictDerivAt_norm_smul_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E →L[] } {x : E} {t : } (ht : 0 < t) (h : HasStrictFDerivAt (fun (x : E) => x) f x) :
HasStrictFDerivAt (fun (x : E) => x) f (t x)
theorem HasFDerivAt.hasFDerivAt_norm_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E →L[] } {x : E} {t : } (ht : t 0) (h : HasFDerivAt (fun (x : E) => x) f x) :
HasFDerivAt (fun (x : E) => x) ((SignType.sign t) f) (t x)
theorem HasFDerivAt.hasFDerivAt_norm_smul_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E →L[] } {x : E} {t : } (ht : t < 0) (h : HasFDerivAt (fun (x : E) => x) f x) :
HasFDerivAt (fun (x : E) => x) (-f) (t x)
theorem HasFDerivAt.hasFDerivAt_norm_smul_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E →L[] } {x : E} {t : } (ht : 0 < t) (h : HasFDerivAt (fun (x : E) => x) f x) :
HasFDerivAt (fun (x : E) => x) f (t x)
theorem differentiableAt_norm_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {x : E} {t : } (ht : t 0) :
DifferentiableAt (fun (x : E) => x) x DifferentiableAt (fun (x : E) => x) (t x)
theorem DifferentiableAt.differentiableAt_norm_of_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {x : E} {t : } (h : DifferentiableAt (fun (x : E) => x) (t x)) :
DifferentiableAt (fun (x : E) => x) x
theorem DifferentiableAt.fderiv_norm_self {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {x : E} (h : DifferentiableAt (fun (x : E) => x) x) :
(fderiv (fun (x : E) => x) x) x = x
theorem fderiv_norm_smul {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] (x : E) (t : ) :
fderiv (fun (x : E) => x) (t x) = (SignType.sign t) fderiv (fun (x : E) => x) x
theorem fderiv_norm_smul_pos {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {x : E} {t : } (ht : 0 < t) :
fderiv (fun (x : E) => x) (t x) = fderiv (fun (x : E) => x) x
theorem fderiv_norm_smul_neg {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {x : E} {t : } (ht : t < 0) :
fderiv (fun (x : E) => x) (t x) = -fderiv (fun (x : E) => x) x
theorem norm_fderiv_norm {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {x : E} [Nontrivial E] (h : DifferentiableAt (fun (x : E) => x) x) :
fderiv (fun (x : E) => x) x = 1