Documentation

Mathlib.Analysis.Calculus.FirstDerivativeTest

The First-Derivative Test #

We prove the first-derivative test in the strong form given on Wikipedia.

The test is proved over the real numbers ℝ using monotoneOn_of_deriv_nonneg from [Mathlib.Analysis.Calculus.MeanValue].

Main results #

Tags #

derivative test, calculus

theorem isLocalMax_of_deriv_Ioo {f : } {a b c : } (g₀ : a < b) (g₁ : b < c) (h : ContinuousAt f b) (hd₀ : DifferentiableOn f (Set.Ioo a b)) (hd₁ : DifferentiableOn f (Set.Ioo b c)) (h₀ : xSet.Ioo a b, 0 deriv f x) (h₁ : xSet.Ioo b c, deriv f x 0) :

The First-Derivative Test from calculus, maxima version. Suppose a < b < c, f : ℝ → ℝ is continuous at b, the derivative f' is nonnegative on (a,b), and the derivative f' is nonpositive on (b,c). Then f has a local maximum at a.

theorem isLocalMin_of_deriv_Ioo {f : } {a b c : } (g₀ : a < b) (g₁ : b < c) (h : ContinuousAt f b) (hd₀ : DifferentiableOn f (Set.Ioo a b)) (hd₁ : DifferentiableOn f (Set.Ioo b c)) (h₀ : xSet.Ioo a b, deriv f x 0) (h₁ : xSet.Ioo b c, 0 deriv f x) :

The First-Derivative Test from calculus, minima version.

theorem isLocalMax_of_deriv' {f : } {b : } (h : ContinuousAt f b) (hd₀ : ∀ᶠ (x : ) in nhdsWithin b (Set.Iio b), DifferentiableAt f x) (hd₁ : ∀ᶠ (x : ) in nhdsWithin b (Set.Ioi b), DifferentiableAt f x) (h₀ : ∀ᶠ (x : ) in nhdsWithin b (Set.Iio b), 0 deriv f x) (h₁ : ∀ᶠ (x : ) in nhdsWithin b (Set.Ioi b), deriv f x 0) :

The First-Derivative Test from calculus, maxima version, expressed in terms of left and right filters.

theorem isLocalMin_of_deriv' {f : } {b : } (h : ContinuousAt f b) (hd₀ : ∀ᶠ (x : ) in nhdsWithin b (Set.Iio b), DifferentiableAt f x) (hd₁ : ∀ᶠ (x : ) in nhdsWithin b (Set.Ioi b), DifferentiableAt f x) (h₀ : ∀ᶠ (x : ) in nhdsWithin b (Set.Iio b), deriv f x 0) (h₁ : ∀ᶠ (x : ) in nhdsWithin b (Set.Ioi b), deriv f x 0) :

The First-Derivative Test from calculus, minima version, expressed in terms of left and right filters.

theorem isLocalMax_of_deriv {f : } {b : } (h : ContinuousAt f b) (hd : ∀ᶠ (x : ) in nhdsWithin b {b}, DifferentiableAt f x) (h₀ : ∀ᶠ (x : ) in nhdsWithin b (Set.Iio b), 0 deriv f x) (h₁ : ∀ᶠ (x : ) in nhdsWithin b (Set.Ioi b), deriv f x 0) :

The First Derivative test, maximum version.

theorem isLocalMin_of_deriv {f : } {b : } (h : ContinuousAt f b) (hd : ∀ᶠ (x : ) in nhdsWithin b {b}, DifferentiableAt f x) (h₀ : ∀ᶠ (x : ) in nhdsWithin b (Set.Iio b), deriv f x 0) (h₁ : ∀ᶠ (x : ) in nhdsWithin b (Set.Ioi b), 0 deriv f x) :

The First Derivative test, minimum version.