Documentation

Mathlib.Analysis.Calculus.IteratedDeriv.ConvergenceOnBall

Taylor series converges to function on whole ball #

In this file we prove that if a function f is analytic on the ball of convergence of its Taylor series, then the series converges to f on this ball.

theorem AnalyticOn.hasFPowerSeriesOnSubball {๐•œ : Type u_1} [RCLike ๐•œ] {f : ๐•œ โ†’ ๐•œ} {x : ๐•œ} {r : ENNReal} (hr_pos : 0 < r) (h : AnalyticOn ๐•œ f (EMetric.ball x r)) :
r โ‰ค (FormalMultilinearSeries.ofScalars ๐•œ fun (n : โ„•) => iteratedDeriv n f x / โ†‘n.factorial).radius โ†’ HasFPowerSeriesOnBall f (FormalMultilinearSeries.ofScalars ๐•œ fun (n : โ„•) => iteratedDeriv n f x / โ†‘n.factorial) x r

If f is analytic on Bแตฃ(xโ‚€) and its Taylor series converges on this ball, then it converges to f.

theorem AnalyticOn.hasFPowerSeriesOnBall {๐•œ : Type u_1} [RCLike ๐•œ] {f : ๐•œ โ†’ ๐•œ} {x : ๐•œ} :
0 < (FormalMultilinearSeries.ofScalars ๐•œ fun (n : โ„•) => iteratedDeriv n f x / โ†‘n.factorial).radius โ†’ AnalyticOn ๐•œ f (EMetric.ball x (FormalMultilinearSeries.ofScalars ๐•œ fun (n : โ„•) => iteratedDeriv n f x / โ†‘n.factorial).radius) โ†’ HasFPowerSeriesOnBall f (FormalMultilinearSeries.ofScalars ๐•œ fun (n : โ„•) => iteratedDeriv n f x / โ†‘n.factorial) x (FormalMultilinearSeries.ofScalars ๐•œ fun (n : โ„•) => iteratedDeriv n f x / โ†‘n.factorial).radius

If f is analytic on the ball of convergence of its Taylor series, then the series converges to f on this ball. This is a stronger version of AnalyticAt.hasFPowerSeriesAt that requires the assumption RCLike ๐•œ.

For example, over the p-adic numbers, the indicator function of the unit ball is analytic everywhere, but it agrees with the sum of its Taylor series only on this unit ball.