Taylor series converges to function on whole ball #
In this file we prove that if a function f is analytic on the ball of convergence of its Taylor
series, then the series converges to f on this ball.
theorem
AnalyticOn.hasFPowerSeriesOnSubball
{๐ : Type u_1}
[RCLike ๐]
{f : ๐ โ ๐}
{x : ๐}
{r : ENNReal}
(hr_pos : 0 < r)
(h : AnalyticOn ๐ f (EMetric.ball x r))
:
r โค (FormalMultilinearSeries.ofScalars ๐ fun (n : โ) => iteratedDeriv n f x / โn.factorial).radius โ
HasFPowerSeriesOnBall f (FormalMultilinearSeries.ofScalars ๐ fun (n : โ) => iteratedDeriv n f x / โn.factorial) x r
If f is analytic on Bแตฃ(xโ) and its Taylor series converges on this ball, then it converges
to f.
theorem
AnalyticOn.hasFPowerSeriesOnBall
{๐ : Type u_1}
[RCLike ๐]
{f : ๐ โ ๐}
{x : ๐}
:
0 < (FormalMultilinearSeries.ofScalars ๐ fun (n : โ) => iteratedDeriv n f x / โn.factorial).radius โ
AnalyticOn ๐ f
(EMetric.ball x (FormalMultilinearSeries.ofScalars ๐ fun (n : โ) => iteratedDeriv n f x / โn.factorial).radius) โ
HasFPowerSeriesOnBall f (FormalMultilinearSeries.ofScalars ๐ fun (n : โ) => iteratedDeriv n f x / โn.factorial) x
(FormalMultilinearSeries.ofScalars ๐ fun (n : โ) => iteratedDeriv n f x / โn.factorial).radius
If f is analytic on the ball of convergence of its Taylor series, then the series converges
to f on this ball. This is a stronger version of AnalyticAt.hasFPowerSeriesAt that requires
the assumption RCLike ๐.
For example, over the p-adic numbers, the indicator function of the unit ball is
analytic everywhere, but it agrees with the sum of its Taylor series only on this unit ball.