Local extremum and line derivatives #
If f
has a local extremum at a point, then the derivative at this point is zero.
In this file we prove several versions of this fact for line derivatives.
theorem
IsExtrFilter.hasLineDerivAt_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
{f : E → ℝ}
{a b : E}
{f' : ℝ}
{l : Filter E}
(h : IsExtrFilter f l a)
(hd : HasLineDerivAt ℝ f f' a b)
(h' : Filter.Tendsto (fun (t : ℝ) => a + t • b) (nhds 0) l)
:
f' = 0
theorem
IsExtrFilter.lineDeriv_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
{f : E → ℝ}
{a b : E}
{l : Filter E}
(h : IsExtrFilter f l a)
(h' : Filter.Tendsto (fun (t : ℝ) => a + t • b) (nhds 0) l)
:
theorem
IsLocalExtr.hasLineDerivAt_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
[TopologicalSpace E]
[ContinuousAdd E]
[ContinuousSMul ℝ E]
{f : E → ℝ}
{a b : E}
{f' : ℝ}
(h : IsLocalExtr f a)
(hd : HasLineDerivAt ℝ f f' a b)
:
f' = 0
theorem
IsLocalExtr.lineDeriv_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
[TopologicalSpace E]
[ContinuousAdd E]
[ContinuousSMul ℝ E]
{f : E → ℝ}
{a : E}
(h : IsLocalExtr f a)
:
theorem
IsLocalMin.hasLineDerivAt_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
[TopologicalSpace E]
[ContinuousAdd E]
[ContinuousSMul ℝ E]
{f : E → ℝ}
{a b : E}
{f' : ℝ}
(h : IsLocalMin f a)
(hd : HasLineDerivAt ℝ f f' a b)
:
f' = 0
theorem
IsLocalMin.lineDeriv_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
[TopologicalSpace E]
[ContinuousAdd E]
[ContinuousSMul ℝ E]
{f : E → ℝ}
{a : E}
(h : IsLocalMin f a)
:
theorem
IsLocalMax.hasLineDerivAt_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
[TopologicalSpace E]
[ContinuousAdd E]
[ContinuousSMul ℝ E]
{f : E → ℝ}
{a b : E}
{f' : ℝ}
(h : IsLocalMax f a)
(hd : HasLineDerivAt ℝ f f' a b)
:
f' = 0
theorem
IsLocalMax.lineDeriv_eq_zero
{E : Type u_1}
[AddCommGroup E]
[Module ℝ E]
[TopologicalSpace E]
[ContinuousAdd E]
[ContinuousSMul ℝ E]
{f : E → ℝ}
{a : E}
(h : IsLocalMax f a)
: