Documentation

Mathlib.Analysis.Calculus.TangentCone.Real

Unique differentiability property in real normed spaces #

In this file we prove that

theorem mem_tangentConeAt_of_openSegment_subset {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {s : Set E} {x y : E} (h : openSegment x y s) :

If a subset of a real vector space contains an open segment, then the direction of this segment belongs to the tangent cone at its endpoints.

@[deprecated mem_tangentConeAt_of_openSegment_subset (since := "2025-04-27")]
theorem mem_tangentCone_of_openSegment_subset {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {s : Set E} {x y : E} (h : openSegment x y s) :

Alias of mem_tangentConeAt_of_openSegment_subset.


If a subset of a real vector space contains an open segment, then the direction of this segment belongs to the tangent cone at its endpoints.

theorem mem_tangentConeAt_of_segment_subset {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {s : Set E} {x y : E} (h : segment x y s) :

If a subset of a real vector space contains a segment, then the direction of this segment belongs to the tangent cone at its endpoints.

@[deprecated mem_tangentConeAt_of_segment_subset (since := "2025-04-27")]
theorem mem_tangentCone_of_segment_subset {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {s : Set E} {x y : E} (h : segment x y s) :

Alias of mem_tangentConeAt_of_segment_subset.


If a subset of a real vector space contains a segment, then the direction of this segment belongs to the tangent cone at its endpoints.

theorem Convex.span_tangentConeAt {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {s : Set E} (conv : Convex s) (hs : (interior s).Nonempty) {x : E} (hx : x closure s) :
theorem uniqueDiffWithinAt_convex {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {s : Set E} (conv : Convex s) (hs : (interior s).Nonempty) {x : E} (hx : x closure s) :

In a real vector space, a convex set with nonempty interior is a set of unique differentiability at every point of its closure.

theorem uniqueDiffOn_convex {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {s : Set E} (conv : Convex s) (hs : (interior s).Nonempty) :

In a real vector space, a convex set with nonempty interior is a set of unique differentiability.

theorem uniqueDiffOn_Icc {a b : } (hab : a < b) :

The real interval [0, 1] is a set of unique differentiability.

theorem uniqueDiffWithinAt_Ioo {a b t : } (ht : t Set.Ioo a b) :