Documentation

Mathlib.Analysis.Complex.UnitDisc.Basic

PoincarΓ© disc #

In this file we define Complex.UnitDisc to be the unit disc in the complex plane. We also introduce some basic operations on this disc.

The complex unit disc, denoted as 𝔻 withinin the Complex namespace

Equations
Instances For

    The complex unit disc, denoted as 𝔻 withinin the Complex namespace

    Equations
    Instances For

      Coercion to β„‚.

      Equations
      Instances For
        @[simp]
        theorem Complex.UnitDisc.coe_inj {z w : UnitDisc} :
        ↑z = ↑w ↔ z = w
        @[deprecated Complex.UnitDisc.norm_lt_one (since := "2025-02-16")]

        Alias of Complex.UnitDisc.norm_lt_one.

        @[deprecated Complex.UnitDisc.norm_ne_one (since := "2025-02-16")]

        Alias of Complex.UnitDisc.norm_ne_one.

        @[simp]
        theorem Complex.UnitDisc.coe_mul (z w : UnitDisc) :
        ↑(z * w) = ↑z * ↑w

        A constructor that assumes β€–zβ€– < 1 instead of dist z 0 < 1 and returns an element of 𝔻 instead of β†₯Metric.ball (0 : β„‚) 1.

        Equations
        Instances For
          @[simp]
          theorem Complex.UnitDisc.coe_mk (z : β„‚) (hz : β€–zβ€– < 1) :
          ↑(mk z hz) = z
          @[simp]
          theorem Complex.UnitDisc.mk_coe (z : UnitDisc) (hz : ‖↑zβ€– < 1 := β‹―) :
          mk (↑z) hz = z
          @[simp]
          theorem Complex.UnitDisc.mk_neg (z : β„‚) (hz : β€–-zβ€– < 1) :
          mk (-z) hz = -mk z β‹―
          @[simp]
          theorem Complex.UnitDisc.coe_zero :
          ↑0 = 0
          @[simp]
          theorem Complex.UnitDisc.coe_eq_zero {z : UnitDisc} :
          ↑z = 0 ↔ z = 0
          @[simp]
          theorem Complex.UnitDisc.mk_zero :
          mk 0 β‹― = 0
          @[simp]
          theorem Complex.UnitDisc.mk_eq_zero {z : β„‚} (hz : β€–zβ€– < 1) :
          mk z hz = 0 ↔ z = 0
          @[simp]
          theorem Complex.UnitDisc.coe_smul_circle (z : Circle) (w : UnitDisc) :
          ↑(z β€’ w) = ↑z * ↑w
          @[simp]
          theorem Complex.UnitDisc.coe_smul_closedBall (z : ↑(Metric.closedBall 0 1)) (w : UnitDisc) :
          ↑(z β€’ w) = ↑z * ↑w

          Real part of a point of the unit disc.

          Equations
          Instances For

            Imaginary part of a point of the unit disc.

            Equations
            Instances For
              @[simp]
              theorem Complex.UnitDisc.re_coe (z : UnitDisc) :
              (↑z).re = z.re
              @[simp]
              theorem Complex.UnitDisc.im_coe (z : UnitDisc) :
              (↑z).im = z.im
              @[simp]
              @[simp]

              Conjugate point of the unit disc.

              Equations
              Instances For
                @[simp]
                theorem Complex.UnitDisc.coe_conj (z : UnitDisc) :
                ↑z.conj = (starRingEnd β„‚) ↑z
                @[simp]
                @[simp]
                @[simp]
                theorem Complex.UnitDisc.conj_mul (z w : UnitDisc) :
                (z * w).conj = z.conj * w.conj