Poincaré disc #
In this file we define Complex.UnitDisc
to be the unit disc in the complex plane. We also
introduce some basic operations on this disc.
The complex unit disc, denoted as đť”»
withinin the Complex namespace
Equations
- Complex.UnitDisc = ↑(Metric.ball 0 1)
Instances For
The complex unit disc, denoted as đť”»
withinin the Complex namespace
Equations
- UnitDisc.termđť”» = Lean.ParserDescr.node `UnitDisc.termđť”» 1024 (Lean.ParserDescr.symbol "đť”»")
Instances For
Equations
- Complex.UnitDisc.instCoe = { coe := Subtype.val }
A constructor that assumes abs z < 1
instead of dist z 0 < 1
and returns an element
of đť”»
instead of ↥Metric.ball (0 : ℂ) 1
.
Equations
- Complex.UnitDisc.mk z hz = ⟨z, ⋯⟩
Instances For
Equations
- Complex.UnitDisc.instInhabited = { default := 0 }
instance
Complex.UnitDisc.isScalarTower_closedBall_closedBall :
IsScalarTower (↑(Metric.closedBall 0 1)) (↑(Metric.closedBall 0 1)) UnitDisc
instance
Complex.UnitDisc.isScalarTower_closedBall :
IsScalarTower (↑(Metric.closedBall 0 1)) UnitDisc UnitDisc
instance
Complex.UnitDisc.instSMulCommClass_closedBall :
SMulCommClass (↑(Metric.closedBall 0 1)) UnitDisc UnitDisc
instance
Complex.UnitDisc.instSMulCommClass_closedBall' :
SMulCommClass UnitDisc (↑(Metric.closedBall 0 1)) UnitDisc
@[simp]
Conjugate point of the unit disc.
Equations
- z.conj = Complex.UnitDisc.mk ((starRingEnd ℂ) ↑z) ⋯