Documentation

Mathlib.Analysis.Convex.Continuous

Convex functions are continuous #

This file proves that a convex function from a finite dimensional real normed space to is continuous.

theorem ConvexOn.lipschitzOnWith_of_abs_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x₀ : E} {ε r M : } (hf : ConvexOn (Metric.ball x₀ r) f) (hε : 0 < ε) (hM : ∀ (a : E), dist a x₀ < r|f a| M) :
LipschitzOnWith (2 * M / ε).toNNReal f (Metric.ball x₀ (r - ε))
theorem ConcaveOn.lipschitzOnWith_of_abs_le {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x₀ : E} {ε r M : } (hf : ConcaveOn (Metric.ball x₀ r) f) (hε : 0 < ε) (hM : ∀ (a : E), dist a x₀ < r|f a| M) :
LipschitzOnWith (2 * M / ε).toNNReal f (Metric.ball x₀ (r - ε))
theorem ConvexOn.exists_lipschitzOnWith_of_isBounded {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x₀ : E} {r r' : } (hf : ConvexOn (Metric.ball x₀ r) f) (hr : r' < r) (hf' : Bornology.IsBounded (f '' Metric.ball x₀ r)) :
∃ (K : NNReal), LipschitzOnWith K f (Metric.ball x₀ r')
theorem ConcaveOn.exists_lipschitzOnWith_of_isBounded {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {f : E} {x₀ : E} {r r' : } (hf : ConcaveOn (Metric.ball x₀ r) f) (hr : r' < r) (hf' : Bornology.IsBounded (f '' Metric.ball x₀ r)) :
∃ (K : NNReal), LipschitzOnWith K f (Metric.ball x₀ r')
theorem ConvexOn.isBoundedUnder_abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {C : Set E} {f : E} (hf : ConvexOn C f) {x₀ : E} (hC : C nhds x₀) :
Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) |f| Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) f
theorem ConcaveOn.isBoundedUnder_abs {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {C : Set E} {f : E} (hf : ConcaveOn C f) {x₀ : E} (hC : C nhds x₀) :
Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) |f| Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) f
theorem ConvexOn.continuousOn_tfae {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {C : Set E} {f : E} (hC : IsOpen C) (hC' : C.Nonempty) (hf : ConvexOn C f) :
[LocallyLipschitzOn C f, ContinuousOn f C, x₀C, ContinuousAt f x₀, x₀C, Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) f, ∀ ⦃x₀ : E⦄, x₀ CFilter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) f, ∀ ⦃x₀ : E⦄, x₀ CFilter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) |f|].TFAE
theorem ConcaveOn.continuousOn_tfae {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {C : Set E} {f : E} (hC : IsOpen C) (hC' : C.Nonempty) (hf : ConcaveOn C f) :
[LocallyLipschitzOn C f, ContinuousOn f C, x₀C, ContinuousAt f x₀, x₀C, Filter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) f, ∀ ⦃x₀ : E⦄, x₀ CFilter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) f, ∀ ⦃x₀ : E⦄, x₀ CFilter.IsBoundedUnder (fun (x1 x2 : ) => x1 x2) (nhds x₀) |f|].TFAE
theorem ConvexOn.locallyLipschitzOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {C : Set E} {f : E} [FiniteDimensional E] (hC : IsOpen C) (hf : ConvexOn C f) :
theorem ConvexOn.continuousOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {C : Set E} {f : E} [FiniteDimensional E] (hC : IsOpen C) (hf : ConvexOn C f) :
theorem ConcaveOn.continuousOn {E : Type u_1} [NormedAddCommGroup E] [NormedSpace E] {C : Set E} {f : E} [FiniteDimensional E] (hC : IsOpen C) (hf : ConcaveOn C f) :