Convex functions are continuous #
This file proves that a convex function from a finite dimensional real normed space to ℝ
is
continuous.
theorem
ConvexOn.lipschitzOnWith_of_abs_le
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x₀ : E}
{ε r M : ℝ}
(hf : ConvexOn ℝ (Metric.ball x₀ r) f)
(hε : 0 < ε)
(hM : ∀ (a : E), dist a x₀ < r → |f a| ≤ M)
:
LipschitzOnWith (2 * M / ε).toNNReal f (Metric.ball x₀ (r - ε))
theorem
ConcaveOn.lipschitzOnWith_of_abs_le
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x₀ : E}
{ε r M : ℝ}
(hf : ConcaveOn ℝ (Metric.ball x₀ r) f)
(hε : 0 < ε)
(hM : ∀ (a : E), dist a x₀ < r → |f a| ≤ M)
:
LipschitzOnWith (2 * M / ε).toNNReal f (Metric.ball x₀ (r - ε))
theorem
ConvexOn.exists_lipschitzOnWith_of_isBounded
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x₀ : E}
{r r' : ℝ}
(hf : ConvexOn ℝ (Metric.ball x₀ r) f)
(hr : r' < r)
(hf' : Bornology.IsBounded (f '' Metric.ball x₀ r))
:
∃ (K : NNReal), LipschitzOnWith K f (Metric.ball x₀ r')
theorem
ConcaveOn.exists_lipschitzOnWith_of_isBounded
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
{x₀ : E}
{r r' : ℝ}
(hf : ConcaveOn ℝ (Metric.ball x₀ r) f)
(hr : r' < r)
(hf' : Bornology.IsBounded (f '' Metric.ball x₀ r))
:
∃ (K : NNReal), LipschitzOnWith K f (Metric.ball x₀ r')
theorem
ConvexOn.isBoundedUnder_abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
(hf : ConvexOn ℝ C f)
{x₀ : E}
(hC : C ∈ nhds x₀)
:
Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) (nhds x₀) |f| ↔ Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) (nhds x₀) f
theorem
ConcaveOn.isBoundedUnder_abs
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
(hf : ConcaveOn ℝ C f)
{x₀ : E}
(hC : C ∈ nhds x₀)
:
Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) (nhds x₀) |f| ↔ Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≥ x2) (nhds x₀) f
theorem
ConvexOn.continuousOn_tfae
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
(hC : IsOpen C)
(hC' : C.Nonempty)
(hf : ConvexOn ℝ C f)
:
[LocallyLipschitzOn C f, ContinuousOn f C, ∃ x₀ ∈ C, ContinuousAt f x₀,
∃ x₀ ∈ C, Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) (nhds x₀) f,
∀ ⦃x₀ : E⦄, x₀ ∈ C → Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) (nhds x₀) f,
∀ ⦃x₀ : E⦄, x₀ ∈ C → Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) (nhds x₀) |f|].TFAE
theorem
ConcaveOn.continuousOn_tfae
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
(hC : IsOpen C)
(hC' : C.Nonempty)
(hf : ConcaveOn ℝ C f)
:
[LocallyLipschitzOn C f, ContinuousOn f C, ∃ x₀ ∈ C, ContinuousAt f x₀,
∃ x₀ ∈ C, Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≥ x2) (nhds x₀) f,
∀ ⦃x₀ : E⦄, x₀ ∈ C → Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≥ x2) (nhds x₀) f,
∀ ⦃x₀ : E⦄, x₀ ∈ C → Filter.IsBoundedUnder (fun (x1 x2 : ℝ) => x1 ≤ x2) (nhds x₀) |f|].TFAE
theorem
ConvexOn.locallyLipschitzOn_iff_continuousOn
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
(hC : IsOpen C)
(hf : ConvexOn ℝ C f)
:
LocallyLipschitzOn C f ↔ ContinuousOn f C
theorem
ConcaveOn.locallyLipschitzOn_iff_continuousOn
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
(hC : IsOpen C)
(hf : ConcaveOn ℝ C f)
:
LocallyLipschitzOn C f ↔ ContinuousOn f C
theorem
ConvexOn.locallyLipschitzOn
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hC : IsOpen C)
(hf : ConvexOn ℝ C f)
:
theorem
ConcaveOn.locallyLipschitzOn
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hC : IsOpen C)
(hf : ConcaveOn ℝ C f)
:
theorem
ConvexOn.continuousOn
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hC : IsOpen C)
(hf : ConvexOn ℝ C f)
:
ContinuousOn f C
theorem
ConcaveOn.continuousOn
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hC : IsOpen C)
(hf : ConcaveOn ℝ C f)
:
ContinuousOn f C
theorem
ConvexOn.locallyLipschitzOn_interior
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hf : ConvexOn ℝ C f)
:
LocallyLipschitzOn (interior C) f
theorem
ConcaveOn.locallyLipschitzOn_interior
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hf : ConcaveOn ℝ C f)
:
LocallyLipschitzOn (interior C) f
theorem
ConvexOn.continuousOn_interior
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hf : ConvexOn ℝ C f)
:
ContinuousOn f (interior C)
theorem
ConcaveOn.continuousOn_interior
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{C : Set E}
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hf : ConcaveOn ℝ C f)
:
ContinuousOn f (interior C)
theorem
ConvexOn.locallyLipschitz
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hf : ConvexOn ℝ Set.univ f)
:
theorem
ConcaveOn.locallyLipschitz
{E : Type u_1}
[NormedAddCommGroup E]
[NormedSpace ℝ E]
{f : E → ℝ}
[FiniteDimensional ℝ E]
(hf : ConcaveOn ℝ Set.univ f)
: