Documentation

Mathlib.Analysis.Normed.Affine.Convex

Simplices in normed affine spaces #

We prove the following facts:

theorem Wbtw.dist_add_dist {E : Type u_1} {P : Type u_2} [SeminormedAddCommGroup E] [NormedSpace E] [PseudoMetricSpace P] [NormedAddTorsor E P] {x y z : P} (h : Wbtw x y z) :
dist x y + dist y z = dist x z
theorem dist_add_dist_of_mem_segment {E : Type u_1} [SeminormedAddCommGroup E] [NormedSpace E] {x y z : E} (h : y segment x z) :
dist x y + dist y z = dist x z

We can intercalate a simplex between a point and one of its neighborhoods.