Documentation

Mathlib.Analysis.Convex.ContinuousLinearEquiv

(Pre)images of strict convex sets under continuous linear equivalences #

In this file we prove that the (pre)image of a strict convex set under a continuous linear equivalence is a strict convex set.

@[simp]
theorem ContinuousLinearEquiv.strictConvex_preimage {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [Field ๐•œ] [PartialOrder ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] {s : Set F} (e : E โ‰ƒL[๐•œ] F) :
StrictConvex ๐•œ (โ‡‘e โปยน' s) โ†” StrictConvex ๐•œ s
@[simp]
theorem ContinuousLinearEquiv.strictConvex_image {๐•œ : Type u_1} {E : Type u_2} {F : Type u_3} [Field ๐•œ] [PartialOrder ๐•œ] [AddCommGroup E] [Module ๐•œ E] [TopologicalSpace E] [AddCommGroup F] [Module ๐•œ F] [TopologicalSpace F] {s : Set E} (e : E โ‰ƒL[๐•œ] F) :
StrictConvex ๐•œ (โ‡‘e '' s) โ†” StrictConvex ๐•œ s