(Pre)images of strict convex sets under continuous linear equivalences #
In this file we prove that the (pre)image of a strict convex set under a continuous linear equivalence is a strict convex set.
@[simp]
theorem
ContinuousLinearEquiv.strictConvex_preimage
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[PartialOrder ๐]
[AddCommGroup E]
[Module ๐ E]
[TopologicalSpace E]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
{s : Set F}
(e : E โL[๐] F)
:
@[simp]
theorem
ContinuousLinearEquiv.strictConvex_image
{๐ : Type u_1}
{E : Type u_2}
{F : Type u_3}
[Field ๐]
[PartialOrder ๐]
[AddCommGroup E]
[Module ๐ E]
[TopologicalSpace E]
[AddCommGroup F]
[Module ๐ F]
[TopologicalSpace F]
{s : Set E}
(e : E โL[๐] F)
: