Documentation

Mathlib.Analysis.Convex.EGauge

The Minkowski functional, normed field version #

In this file we define (egauge π•œ s Β·) to be the Minkowski functional (gauge) of the set s in a topological vector space E over a normed field π•œ, as a function E β†’ ℝβ‰₯0∞.

It is defined as the infimum of the norms of c : π•œ such that x ∈ c β€’ s. In particular, for π•œ = ℝβ‰₯0 this definition gives an ℝβ‰₯0∞-valued version of gauge defined in Mathlib/Analysis/Convex/Gauge.lean.

This definition can be used to generalize the notion of FrΓ©chet derivative to maps between topological vector spaces without norms.

Currently, we can't reuse results about egauge for gauge, because we lack a theory of normed semifields.

noncomputable def egauge (π•œ : Type u_1) [ENorm π•œ] {E : Type u_2} [SMul π•œ E] (s : Set E) (x : E) :

The Minkowski functional for vector spaces over normed fields. Given a set s in a vector space over a normed field π•œ, egauge s is the functional which sends x : E to the infimum of β€–cβ€–β‚‘ over c such that x belongs to s scaled by c.

The definition only requires π•œ to have a ENorm instance and (Β· β€’ Β·) : π•œ β†’ E β†’ E to be defined. This way the definition applies, e.g., to π•œ = ℝβ‰₯0. For π•œ = ℝβ‰₯0, the function is equal (up to conversion to ℝ) to the usual Minkowski functional defined in gauge.

Equations
Instances For
    theorem egauge_anti (π•œ : Type u_1) [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] {s t : Set E} (h : HasSubset.Subset s t) (x : E) :
    LE.le (egauge π•œ t x) (egauge π•œ s x)
    theorem egauge_empty (π•œ : Type u_1) [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] (x : E) :
    theorem egauge_le_of_mem_smul {π•œ : Type u_1} [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] {c : π•œ} {s : Set E} {x : E} (h : Membership.mem (HSMul.hSMul c s) x) :
    LE.le (egauge π•œ s x) (ENorm.enorm c)
    theorem le_egauge_iff {π•œ : Type u_1} [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] {s : Set E} {x : E} {r : ENNReal} :
    Iff (LE.le r (egauge π•œ s x)) (βˆ€ (c : π•œ), Membership.mem (HSMul.hSMul c s) x β†’ LE.le r (ENorm.enorm c))
    theorem egauge_eq_top {π•œ : Type u_1} [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] {s : Set E} {x : E} :
    Iff (Eq (egauge π•œ s x) Top.top) (βˆ€ (c : π•œ), Not (Membership.mem (HSMul.hSMul c s) x))
    theorem egauge_lt_iff {π•œ : Type u_1} [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] {s : Set E} {x : E} {r : ENNReal} :
    Iff (LT.lt (egauge π•œ s x) r) (Exists fun (c : π•œ) => And (Membership.mem (HSMul.hSMul c s) x) (LT.lt (ENorm.enorm c) r))
    theorem egauge_union {π•œ : Type u_1} [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] (s t : Set E) (x : E) :
    Eq (egauge π•œ (Union.union s t) x) (Min.min (egauge π•œ s x) (egauge π•œ t x))
    theorem le_egauge_inter {π•œ : Type u_1} [NNNorm π•œ] {E : Type u_2} [SMul π•œ E] (s t : Set E) (x : E) :
    LE.le (Max.max (egauge π•œ s x) (egauge π•œ t x)) (egauge π•œ (Inter.inter s t) x)
    theorem egauge_zero_left_eq_top (π•œ : Type u_1) [NNNorm π•œ] [Nonempty π•œ] {E : Type u_2} [Zero E] [SMulZeroClass π•œ E] {x : E} :
    Iff (Eq (egauge π•œ 0 x) Top.top) (Ne x 0)
    theorem egauge_zero_left (π•œ : Type u_1) [NNNorm π•œ] [Nonempty π•œ] {E : Type u_2} [Zero E] [SMulZeroClass π•œ E] {x : E} :
    Ne x 0 β†’ Eq (egauge π•œ 0 x) Top.top

    Alias of the reverse direction of egauge_zero_left_eq_top.

    theorem egauge_le_of_smul_mem_of_ne {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {c : π•œ} {s : Set E} {x : E} (h : Membership.mem s (HSMul.hSMul c x)) (hc : Ne c 0) :

    If c β€’ x ∈ s and c β‰  0, then egauge π•œ s x is at most (β€–cβ€–β‚Šβ»ΒΉ : ℝβ‰₯0).

    See also egauge_le_of_smul_mem.

    theorem egauge_le_of_smul_mem {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {c : π•œ} {s : Set E} {x : E} (h : Membership.mem s (HSMul.hSMul c x)) :
    LE.le (egauge π•œ s x) (Inv.inv (ENorm.enorm c))

    If c β€’ x ∈ s, then egauge π•œ s x is at most β€–c‖ₑ⁻¹.

    See also egauge_le_of_smul_mem_of_ne.

    theorem mem_of_egauge_lt_one {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {s : Set E} {x : E} (hs : Balanced π•œ s) (hx : LT.lt (egauge π•œ s x) 1) :
    theorem egauge_eq_zero_iff {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {s : Set E} {x : E} :
    Iff (Eq (egauge π•œ s x) 0) (Filter.Frequently (fun (c : π•œ) => Membership.mem (HSMul.hSMul c s) x) (nhds 0))
    theorem egauge_univ {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {x : E} [(nhdsWithin 0 (HasCompl.compl (Singleton.singleton 0))).NeBot] :
    Eq (egauge π•œ Set.univ x) 0
    theorem egauge_zero_right (π•œ : Type u_1) [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {s : Set E} (hs : s.Nonempty) :
    Eq (egauge π•œ s 0) 0
    theorem egauge_zero_zero (π•œ : Type u_1) [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] :
    Eq (egauge π•œ 0 0) 0
    theorem egauge_le_one (π•œ : Type u_1) [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {s : Set E} {x : E} (h : Membership.mem s x) :
    LE.le (egauge π•œ s x) 1
    theorem le_egauge_smul_left {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] (c : π•œ) (s : Set E) (x : E) :
    LE.le (HDiv.hDiv (egauge π•œ s x) (ENorm.enorm c)) (egauge π•œ (HSMul.hSMul c s) x)
    theorem egauge_smul_left {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {c : π•œ} (hc : Ne c 0) (s : Set E) (x : E) :
    Eq (egauge π•œ (HSMul.hSMul c s) x) (HDiv.hDiv (egauge π•œ s x) (ENorm.enorm c))
    theorem le_egauge_smul_right {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] (c : π•œ) (s : Set E) (x : E) :
    LE.le (HMul.hMul (ENorm.enorm c) (egauge π•œ s x)) (egauge π•œ s (HSMul.hSMul c x))
    theorem egauge_smul_right {π•œ : Type u_1} [NormedDivisionRing π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {c : π•œ} {s : Set E} (h : Eq c 0 β†’ s.Nonempty) (x : E) :
    Eq (egauge π•œ s (HSMul.hSMul c x)) (HMul.hMul (ENorm.enorm c) (egauge π•œ s x))
    theorem egauge_add_add_le {π•œ : Type u_1} [NormedField π•œ] {E : Type u_2} [AddCommGroup E] [Module π•œ E] {U V : Set E} (hU : Balanced π•œ U) (hV : Balanced π•œ V) (a b : E) :
    LE.le (egauge π•œ (HAdd.hAdd U V) (HAdd.hAdd a b)) (Max.max (egauge π•œ U a) (egauge π•œ V b))
    theorem div_le_egauge_closedBall (π•œ : Type u_1) [NormedField π•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π•œ E] (r : NNReal) (x : E) :
    theorem le_egauge_closedBall_one (π•œ : Type u_1) [NormedField π•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π•œ E] (x : E) :
    LE.le (ENorm.enorm x) (egauge π•œ (Metric.closedBall 0 1) x)
    theorem div_le_egauge_ball (π•œ : Type u_1) [NormedField π•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π•œ E] (r : NNReal) (x : E) :
    theorem le_egauge_ball_one (π•œ : Type u_1) [NormedField π•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π•œ E] (x : E) :
    LE.le (ENorm.enorm x) (egauge π•œ (Metric.ball 0 1) x)
    theorem egauge_ball_le_of_one_lt_norm {π•œ : Type u_1} [NormedField π•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π•œ E] {c : π•œ} {x : E} {r : NNReal} (hc : LT.lt 1 (Norm.norm c)) (hβ‚€ : Or (Ne r 0) (Ne (Norm.norm x) 0)) :
    theorem egauge_ball_one_le_of_one_lt_norm {π•œ : Type u_1} [NormedField π•œ] {E : Type u_2} [SeminormedAddCommGroup E] [NormedSpace π•œ E] {c : π•œ} (hc : LT.lt 1 (Norm.norm c)) (x : E) :