Convex join #
This file defines the convex join of two sets. The convex join of s
and t
is the union of the
segments with one end in s
and the other in t
. This is notably a useful gadget to deal with
convex hulls of finite sets.
def
convexJoin
(𝕜 : Type u_2)
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s t : Set E)
:
Set E
The join of two sets is the union of the segments joining them. This can be interpreted as the topological join, but within the original space.
Equations
- convexJoin 𝕜 s t = ⋃ x ∈ s, ⋃ y ∈ t, segment 𝕜 x y
Instances For
theorem
mem_convexJoin
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s t : Set E}
{x : E}
:
theorem
convexJoin_comm
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s t : Set E)
:
theorem
convexJoin_mono
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s₁ s₂ t₁ t₂ : Set E}
(hs : s₁ ⊆ s₂)
(ht : t₁ ⊆ t₂)
:
theorem
convexJoin_mono_left
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{t s₁ s₂ : Set E}
(hs : s₁ ⊆ s₂)
:
theorem
convexJoin_mono_right
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s t₁ t₂ : Set E}
(ht : t₁ ⊆ t₂)
:
@[simp]
theorem
convexJoin_empty_left
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(t : Set E)
:
@[simp]
theorem
convexJoin_empty_right
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s : Set E)
:
@[simp]
theorem
convexJoin_singleton_left
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(t : Set E)
(x : E)
:
@[simp]
theorem
convexJoin_singleton_right
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s : Set E)
(y : E)
:
theorem
convexJoin_singletons
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{y : E}
(x : E)
:
@[simp]
theorem
convexJoin_union_left
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s₁ s₂ t : Set E)
:
@[simp]
theorem
convexJoin_union_right
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s t₁ t₂ : Set E)
:
@[simp]
theorem
convexJoin_iUnion_left
{ι : Sort u_1}
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s : ι → Set E)
(t : Set E)
:
@[simp]
theorem
convexJoin_iUnion_right
{ι : Sort u_1}
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s : Set E)
(t : ι → Set E)
:
theorem
segment_subset_convexJoin
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s t : Set E}
{x y : E}
(hx : x ∈ s)
(hy : y ∈ t)
:
theorem
subset_convexJoin_left
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s t : Set E}
(h : t.Nonempty)
:
theorem
subset_convexJoin_right
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s t : Set E}
(h : s.Nonempty)
:
theorem
convexJoin_subset
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
{s t u : Set E}
(hs : s ⊆ u)
(ht : t ⊆ u)
(hu : Convex 𝕜 u)
:
theorem
convexJoin_subset_convexHull
{𝕜 : Type u_2}
{E : Type u_3}
[OrderedSemiring 𝕜]
[AddCommMonoid E]
[Module 𝕜 E]
(s t : Set E)
:
theorem
convexJoin_assoc_aux
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(s t u : Set E)
:
theorem
convexJoin_assoc
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(s t u : Set E)
:
theorem
convexJoin_left_comm
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(s t u : Set E)
:
theorem
convexJoin_right_comm
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(s t u : Set E)
:
theorem
convexJoin_convexJoin_convexJoin_comm
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(s t u v : Set E)
:
convexJoin 𝕜 (convexJoin 𝕜 s t) (convexJoin 𝕜 u v) = convexJoin 𝕜 (convexJoin 𝕜 s u) (convexJoin 𝕜 t v)
theorem
Convex.convexJoin
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
{s t : Set E}
(hs : Convex 𝕜 s)
(ht : Convex 𝕜 t)
:
Convex 𝕜 (convexJoin 𝕜 s t)
theorem
Convex.convexHull_union
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
{s t : Set E}
(hs : Convex 𝕜 s)
(ht : Convex 𝕜 t)
(hs₀ : s.Nonempty)
(ht₀ : t.Nonempty)
:
theorem
convexHull_union
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
{s t : Set E}
(hs : s.Nonempty)
(ht : t.Nonempty)
:
theorem
convexHull_insert
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
{s : Set E}
{x : E}
(hs : s.Nonempty)
:
theorem
convexJoin_segments
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(a b c d : E)
:
theorem
convexJoin_segment_singleton
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(a b c : E)
:
theorem
convexJoin_singleton_segment
{𝕜 : Type u_2}
{E : Type u_3}
[LinearOrderedField 𝕜]
[AddCommGroup E]
[Module 𝕜 E]
(a b c : E)
: