Documentation

Mathlib.Analysis.Convex.SpecificFunctions.Pow

Convexity properties of rpow #

We prove basic convexity properties of the rpow function. The proofs are elementary and do not require calculus, and as such this file has only moderate dependencies.

Main declarations #

Note that convexity for p > 1 can be found in Analysis.Convex.SpecificFunctions.Basic, which requires slightly less imports.

TODO #

theorem NNReal.strictConcaveOn_rpow {p : } (hp₀ : 0 < p) (hp₁ : p < 1) :
StrictConcaveOn NNReal Set.univ fun (x : NNReal) => x ^ p
theorem NNReal.concaveOn_rpow {p : } (hp₀ : 0 p) (hp₁ : p 1) :
ConcaveOn NNReal Set.univ fun (x : NNReal) => x ^ p
theorem Real.strictConcaveOn_rpow {p : } (hp₀ : 0 < p) (hp₁ : p < 1) :
StrictConcaveOn (Set.Ici 0) fun (x : ) => x ^ p
theorem Real.concaveOn_rpow {p : } (hp₀ : 0 p) (hp₁ : p 1) :
ConcaveOn (Set.Ici 0) fun (x : ) => x ^ p