Convexity properties of rpow
#
We prove basic convexity properties of the rpow
function. The proofs are elementary and do not
require calculus, and as such this file has only moderate dependencies.
Main declarations #
NNReal.strictConcaveOn_rpow
,Real.strictConcaveOn_rpow
: strict concavity offun x ↦ x ^ p
for p ∈ (0,1)NNReal.concaveOn_rpow
,Real.concaveOn_rpow
: concavity offun x ↦ x ^ p
for p ∈ [0,1]
Note that convexity for p > 1
can be found in Analysis.Convex.SpecificFunctions.Basic
, which
requires slightly less imports.
TODO #
- Prove convexity for negative powers.
theorem
NNReal.strictConcaveOn_rpow
{p : ℝ}
(hp₀ : 0 < p)
(hp₁ : p < 1)
:
StrictConcaveOn NNReal Set.univ fun (x : NNReal) => x ^ p
theorem
Real.strictConcaveOn_rpow
{p : ℝ}
(hp₀ : 0 < p)
(hp₁ : p < 1)
:
StrictConcaveOn ℝ (Set.Ici 0) fun (x : ℝ) => x ^ p