Fourier transform on Schwartz functions #
This file constructs the Fourier transform as a continuous linear map acting on Schwartz
functions, in fourierTransformCLM. It is also given as a continuous linear equiv, in
fourierTransformCLE.
The Fourier transform on a real inner product space, as a continuous linear map on the Schwartz space.
Equations
- SchwartzMap.fourierTransformCLM π = SchwartzMap.mkCLM (fun (x : SchwartzMap V E) => FourierTransform.fourier βx) β― β― β― β―
Instances For
Equations
- SchwartzMap.instFourierTransform = { fourier := fun (f : SchwartzMap V E) => (SchwartzMap.fourierTransformCLM β) f }
Equations
- SchwartzMap.instFourierModule π = { toFourierTransform := SchwartzMap.instFourierTransform, fourier_add := β―, fourier_smul := β― }
Equations
- One or more equations did not get rendered due to their size.
Equations
- SchwartzMap.instFourierInvModule π = { toFourierTransformInv := SchwartzMap.instFourierTransformInv, fourierInv_add := β―, fourierInv_smul := β― }
Alias of FourierPair.fourierInv_fourier_eq.
Alias of FourierInvPair.fourier_fourierInv_eq.
The Fourier transform on a real inner product space, as a continuous linear equiv on the Schwartz space.
Equations
- SchwartzMap.fourierTransformCLE π = { toLinearEquiv := FourierTransform.fourierEquiv π (SchwartzMap V E) (SchwartzMap V E), continuous_toFun := β―, continuous_invFun := β― }
Instances For
The Fourier transform satisfies β« π f * g = β« f * π g, i.e., it is self-adjoint.
Version where the multiplication is replaced by a general bilinear form M.
Alias of SchwartzMap.integral_bilin_fourier_eq.
The Fourier transform satisfies β« π f * g = β« f * π g, i.e., it is self-adjoint.
Version where the multiplication is replaced by a general bilinear form M.
Alias of SchwartzMap.integral_sesq_fourier_eq.
Plancherel's theorem for Schwartz functions.
Version where the multiplication is replaced by a general bilinear form M.
Plancherel's theorem for Schwartz functions.
Alias of SchwartzMap.inner_fourier_toL2_eq.
Alias of SchwartzMap.norm_fourier_toL2_eq.