Documentation

Mathlib.Analysis.Distribution.FourierSchwartz

Fourier transform on Schwartz functions #

This file constructs the Fourier transform as a continuous linear map acting on Schwartz functions, in fourierTransformCLM. It is also given as a continuous linear equiv, in fourierTransformCLE.

The Fourier transform on a real inner product space, as a continuous linear map on the Schwartz space.

Equations
Instances For
    Equations
    Equations
    • One or more equations did not get rendered due to their size.
    Equations
    @[deprecated FourierPair.fourierInv_fourier_eq (since := "2025-11-13")]
    theorem SchwartzMap.fourier_inversion {E : Type u_1} {F : Type u_2} {inst✝ : FourierTransform E F} {inst✝¹ : FourierTransformInv F E} [self : FourierPair E F] (f : E) :

    Alias of FourierPair.fourierInv_fourier_eq.

    @[deprecated FourierInvPair.fourier_fourierInv_eq (since := "2025-11-13")]
    theorem SchwartzMap.fourier_inversion_inv {E : Type u_1} {F : Type u_2} {inst✝ : FourierTransform F E} {inst✝¹ : FourierTransformInv E F} [self : FourierInvPair E F] (f : E) :

    Alias of FourierInvPair.fourier_fourierInv_eq.

    The Fourier transform on a real inner product space, as a continuous linear equiv on the Schwartz space.

    Equations
    Instances For

      The Fourier transform satisfies ∫ 𝓕 f * g = ∫ f * 𝓕 g, i.e., it is self-adjoint. Version where the multiplication is replaced by a general bilinear form M.

      @[deprecated SchwartzMap.integral_bilin_fourier_eq (since := "2025-11-16")]

      Alias of SchwartzMap.integral_bilin_fourier_eq.


      The Fourier transform satisfies ∫ 𝓕 f * g = ∫ f * 𝓕 g, i.e., it is self-adjoint. Version where the multiplication is replaced by a general bilinear form M.

      @[deprecated SchwartzMap.integral_sesq_fourier_eq (since := "2025-11-16")]

      Alias of SchwartzMap.integral_sesq_fourier_eq.

      Plancherel's theorem for Schwartz functions.

      Version where the multiplication is replaced by a general bilinear form M.