Documentation

Mathlib.Analysis.Distribution.SchwartzSpace

Schwartz space #

This file defines the Schwartz space. Usually, the Schwartz space is defined as the set of smooth functions $f : ℝ^n β†’ β„‚$ such that there exists $C_{Ξ±Ξ²} > 0$ with $$|x^Ξ± βˆ‚^Ξ² f(x)| < C_{Ξ±Ξ²}$$ for all $x ∈ ℝ^n$ and for all multiindices $Ξ±, Ξ²$. In mathlib, we use a slightly different approach and define the Schwartz space as all smooth functions f : E β†’ F, where E and F are real normed vector spaces such that for all natural numbers k and n we have uniform bounds β€–xβ€–^k * β€–iteratedFDeriv ℝ n f xβ€– < C. This approach completely avoids using partial derivatives as well as polynomials. We construct the topology on the Schwartz space by a family of seminorms, which are the best constants in the above estimates. The abstract theory of topological vector spaces developed in SeminormFamily.moduleFilterBasis and WithSeminorms.toLocallyConvexSpace turns the Schwartz space into a locally convex topological vector space.

Main definitions #

Main statements #

Implementation details #

The implementation of the seminorms is taken almost literally from ContinuousLinearMap.opNorm.

Notation #

Tags #

Schwartz space, tempered distributions

structure SchwartzMap (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] :
Type (max u_5 u_6)

A function is a Schwartz function if it is smooth and all derivatives decay faster than any power of β€–xβ€–.

Instances For

    A function is a Schwartz function if it is smooth and all derivatives decay faster than any power of β€–xβ€–.

    Equations
    • One or more equations did not get rendered due to their size.
    Instances For
      Equations
      theorem SchwartzMap.decay {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (k n : β„•) :
      βˆƒ (C : ℝ), 0 < C ∧ βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ C

      All derivatives of a Schwartz function are rapidly decaying.

      theorem SchwartzMap.smooth {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (n : β„•βˆž) :
      ContDiff ℝ ↑n ⇑f

      Every Schwartz function is smooth.

      theorem SchwartzMap.contDiffAt {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (n : β„•βˆž) {x : E} :
      ContDiffAt ℝ (↑n) (⇑f) x

      Every Schwartz function is smooth at any point.

      Every Schwartz function is continuous.

      Every Schwartz function is differentiable.

      Every Schwartz function is differentiable at any point.

      theorem SchwartzMap.ext {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} (h : βˆ€ (x : E), f x = g x) :
      f = g
      theorem SchwartzMap.ext_iff {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} :
      f = g ↔ βˆ€ (x : E), f x = g x

      Auxiliary lemma, used in proving the more general result isBigO_cocompact_rpow.

      theorem SchwartzMap.decay_smul_aux {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap E F) (c : π•œ) (x : E) :

      Helper definition for the seminorms of the Schwartz space.

      Equations
      Instances For
        theorem SchwartzMap.seminormAux_le_bound {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (k n : β„•) (f : SchwartzMap E F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ M) :

        If one controls the norm of every A x, then one controls the norm of A.

        Algebraic properties #

        instance SchwartzMap.instSMul {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
        SMul π•œ (SchwartzMap E F)
        Equations
        @[simp]
        theorem SchwartzMap.smul_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {f : SchwartzMap E F} {c : π•œ} {x : E} :
        (c β€’ f) x = c β€’ f x
        instance SchwartzMap.instIsScalarTower {π•œ : Type u_2} {π•œ' : Type u_3} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMul π•œ π•œ'] [IsScalarTower π•œ π•œ' F] :
        IsScalarTower π•œ π•œ' (SchwartzMap E F)
        instance SchwartzMap.instSMulCommClass {π•œ : Type u_2} {π•œ' : Type u_3} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [NormedField π•œ'] [NormedSpace π•œ' F] [SMulCommClass ℝ π•œ' F] [SMulCommClass π•œ π•œ' F] :
        SMulCommClass π•œ π•œ' (SchwartzMap E F)
        theorem SchwartzMap.seminormAux_smul_le {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (c : π•œ) (f : SchwartzMap E F) :
        Equations
        Equations
        Equations
        @[simp]
        @[simp]
        theorem SchwartzMap.zero_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {x : E} :
        0 x = 0
        Equations
        @[simp]
        theorem SchwartzMap.neg_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (x : E) :
        (-f) x = -f x
        Equations
        @[simp]
        theorem SchwartzMap.add_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} {x : E} :
        (f + g) x = f x + g x
        Equations
        @[simp]
        theorem SchwartzMap.sub_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f g : SchwartzMap E F} {x : E} :
        (f - g) x = f x - g x
        Equations
        @[simp]
        theorem SchwartzMap.sum_apply {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {ΞΉ : Type u_10} (s : Finset ΞΉ) (f : ΞΉ β†’ SchwartzMap E F) (x : E) :
        (βˆ‘ i ∈ s, f i) x = βˆ‘ i ∈ s, (f i) x

        Coercion as an additive homomorphism.

        Equations
        Instances For
          instance SchwartzMap.instModule {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
          Module π•œ (SchwartzMap E F)
          Equations

          Seminorms on Schwartz space #

          def SchwartzMap.seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) :
          Seminorm π•œ (SchwartzMap E F)

          The seminorms of the Schwartz space given by the best constants in the definition of 𝓒(E, F).

          Equations
          Instances For
            theorem SchwartzMap.seminorm_le_bound (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap E F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : E), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ M) :
            (SchwartzMap.seminorm π•œ k n) f ≀ M

            If one controls the seminorm for every x, then one controls the seminorm.

            theorem SchwartzMap.seminorm_le_bound' (π•œ : Type u_2) {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap ℝ F) {M : ℝ} (hMp : 0 ≀ M) (hM : βˆ€ (x : ℝ), |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ M) :
            (SchwartzMap.seminorm π•œ k n) f ≀ M

            If one controls the seminorm for every x, then one controls the seminorm.

            Variant for functions 𝓒(ℝ, F).

            theorem SchwartzMap.le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap E F) (x : E) :

            The seminorm controls the Schwartz estimate for any fixed x.

            theorem SchwartzMap.le_seminorm' (π•œ : Type u_2) {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (k n : β„•) (f : SchwartzMap ℝ F) (x : ℝ) :
            |x| ^ k * β€–iteratedDeriv n (⇑f) xβ€– ≀ (SchwartzMap.seminorm π•œ k n) f

            The seminorm controls the Schwartz estimate for any fixed x.

            Variant for functions 𝓒(ℝ, F).

            theorem SchwartzMap.norm_iteratedFDeriv_le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (n : β„•) (xβ‚€ : E) :
            β€–iteratedFDeriv ℝ n (⇑f) xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 n) f
            theorem SchwartzMap.norm_pow_mul_le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (k : β„•) (xβ‚€ : E) :
            β€–xβ‚€β€– ^ k * β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ k 0) f
            theorem SchwartzMap.norm_le_seminorm (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (xβ‚€ : E) :
            β€–f xβ‚€β€– ≀ (SchwartzMap.seminorm π•œ 0 0) f
            def schwartzSeminormFamily (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

            The family of Schwartz seminorms.

            Equations
            Instances For
              @[simp]
              theorem SchwartzMap.schwartzSeminormFamily_apply (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (n k : β„•) :
              schwartzSeminormFamily π•œ E F (n, k) = SchwartzMap.seminorm π•œ n k
              @[simp]
              theorem SchwartzMap.schwartzSeminormFamily_apply_zero (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              schwartzSeminormFamily π•œ E F 0 = SchwartzMap.seminorm π•œ 0 0
              theorem SchwartzMap.one_add_le_sup_seminorm_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {m : β„• Γ— β„•} {k n : β„•} (hk : k ≀ m.1) (hn : n ≀ m.2) (f : SchwartzMap E F) (x : E) :
              (1 + β€–xβ€–) ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– ≀ 2 ^ m.1 * ((Finset.Iic m).sup fun (m : β„• Γ— β„•) => SchwartzMap.seminorm π•œ m.1 m.2) f

              A more convenient version of le_sup_seminorm_apply.

              The set Finset.Iic m is the set of all pairs (k', n') with k' ≀ m.1 and n' ≀ m.2. Note that the constant is far from optimal.

              The topology on the Schwartz space #

              theorem schwartz_withSeminorms (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              instance SchwartzMap.instContinuousSMul {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
              def HasCompactSupport.toSchwartzMap {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} (h₁ : HasCompactSupport f) (hβ‚‚ : ContDiff ℝ (β†‘βŠ€) f) :

              A smooth compactly supported function is a Schwartz function.

              Equations
              • h₁.toSchwartzMap hβ‚‚ = { toFun := f, smooth' := hβ‚‚, decay' := β‹― }
              Instances For
                @[simp]
                theorem HasCompactSupport.toSchwartzMap_toFun {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {f : E β†’ F} (h₁ : HasCompactSupport f) (hβ‚‚ : ContDiff ℝ (β†‘βŠ€) f) (a✝ : E) :
                (h₁.toSchwartzMap hβ‚‚) a✝ = f a✝

                Construction of continuous linear maps between Schwartz spaces #

                def SchwartzMap.mkLM {π•œ : Type u_2} {π•œ' : Type u_3} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} (A : SchwartzMap D E β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (f + g) x = A f x + A g x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ f) x = Οƒ a β€’ A f x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ (β†‘βŠ€) (A f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A f) xβ€– ≀ C * (s.sup (schwartzSeminormFamily π•œ D E)) f) :

                Create a semilinear map between Schwartz spaces.

                Note: This is a helper definition for mkCLM.

                Equations
                • SchwartzMap.mkLM A hadd hsmul hsmooth hbound = { toFun := fun (f : SchwartzMap D E) => { toFun := A f, smooth' := β‹―, decay' := β‹― }, map_add' := β‹―, map_smul' := β‹― }
                Instances For
                  def SchwartzMap.mkCLM {π•œ : Type u_2} {π•œ' : Type u_3} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ' G] [SMulCommClass ℝ π•œ' G] {Οƒ : π•œ β†’+* π•œ'} [RingHomIsometric Οƒ] (A : SchwartzMap D E β†’ F β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E) (x : F), A (f + g) x = A f x + A g x) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E) (x : F), A (a β€’ f) x = Οƒ a β€’ A f x) (hsmooth : βˆ€ (f : SchwartzMap D E), ContDiff ℝ (β†‘βŠ€) (A f)) (hbound : βˆ€ (n : β„• Γ— β„•), βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E) (x : F), β€–xβ€– ^ n.1 * β€–iteratedFDeriv ℝ n.2 (A f) xβ€– ≀ C * (s.sup (schwartzSeminormFamily π•œ D E)) f) :

                  Create a continuous semilinear map between Schwartz spaces.

                  For an example of using this definition, see fderivCLM.

                  Equations
                  Instances For
                    def SchwartzMap.mkCLMtoNormedSpace {π•œ : Type u_2} {π•œ' : Type u_3} {D : Type u_4} {E : Type u_5} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedField π•œ] [NormedField π•œ'] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ E] [SMulCommClass ℝ π•œ E] [NormedAddCommGroup G] [NormedSpace π•œ' G] {Οƒ : π•œ β†’+* π•œ'} [RingHomIsometric Οƒ] (A : SchwartzMap D E β†’ G) (hadd : βˆ€ (f g : SchwartzMap D E), A (f + g) = A f + A g) (hsmul : βˆ€ (a : π•œ) (f : SchwartzMap D E), A (a β€’ f) = Οƒ a β€’ A f) (hbound : βˆƒ (s : Finset (β„• Γ— β„•)) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap D E), β€–A fβ€– ≀ C * (s.sup (schwartzSeminormFamily π•œ D E)) f) :

                    Define a continuous semilinear map from Schwartz space to a normed space.

                    Equations
                    Instances For
                      def SchwartzMap.evalCLM {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) :

                      The map applying a vector to Hom-valued Schwartz function as a continuous linear map.

                      Equations
                      Instances For
                        def SchwartzMap.bilinLeftCLM {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) {g : D β†’ F} (hg : Function.HasTemperateGrowth g) :

                        The map f ↦ (x ↦ B (f x) (g x)) as a continuous π•œ-linear map on Schwartz space, where B is a continuous π•œ-linear map and g is a function of temperate growth.

                        Equations
                        Instances For
                          @[simp]
                          theorem SchwartzMap.bilinLeftCLM_apply {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) {g : D β†’ F} (hg : Function.HasTemperateGrowth g) (f : SchwartzMap D E) :
                          ⇑((bilinLeftCLM B hg) f) = fun (x : D) => (B (f x)) (g x)
                          def SchwartzMap.smulLeftCLM {π•œ : Type u_2} {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] (g : E β†’ π•œ) :

                          The map f ↦ (x ↦ g x β€’ f x) as a continuous π•œ-linear map on Schwartz space, where g is a function of temperate growth.

                          Equations
                          Instances For
                            @[simp]
                            theorem SchwartzMap.smulLeftCLM_apply_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) (f : SchwartzMap E F) (x : E) :
                            ((smulLeftCLM F g) f) x = g x β€’ f x
                            @[simp]
                            theorem SchwartzMap.smulLeftCLM_const {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] (c : π•œ) :
                            (smulLeftCLM F fun (x : E) => c) = c β€’ ContinuousLinearMap.id π•œ (SchwartzMap E F)
                            @[simp]
                            theorem SchwartzMap.smulLeftCLM_smulLeftCLM_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) (f : SchwartzMap E F) :
                            (smulLeftCLM F g₁) ((smulLeftCLM F gβ‚‚) f) = (smulLeftCLM F (g₁ * gβ‚‚)) f
                            theorem SchwartzMap.smulLeftCLM_compL_smulLeftCLM {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) :
                            (smulLeftCLM F g₁).comp (smulLeftCLM F gβ‚‚) = smulLeftCLM F (g₁ * gβ‚‚)
                            theorem SchwartzMap.smulLeftCLM_smul {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) (c : π•œ) :
                            theorem SchwartzMap.smulLeftCLM_add {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) :
                            smulLeftCLM F (g₁ + gβ‚‚) = smulLeftCLM F g₁ + smulLeftCLM F gβ‚‚
                            theorem SchwartzMap.smulLeftCLM_sub {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g₁ gβ‚‚ : E β†’ π•œ} (hg₁ : Function.HasTemperateGrowth g₁) (hgβ‚‚ : Function.HasTemperateGrowth gβ‚‚) :
                            smulLeftCLM F (g₁ - gβ‚‚) = smulLeftCLM F g₁ - smulLeftCLM F gβ‚‚
                            theorem SchwartzMap.smulLeftCLM_neg {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : E β†’ π•œ} (hg : Function.HasTemperateGrowth g) :
                            theorem SchwartzMap.smulLeftCLM_sum {ΞΉ : Type u_1} {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedSpace π•œ F] {g : ΞΉ β†’ E β†’ π•œ} {s : Finset ΞΉ} (hg : βˆ€ i ∈ s, Function.HasTemperateGrowth (g i)) :
                            (smulLeftCLM F fun (x : E) => βˆ‘ i ∈ s, g i x) = βˆ‘ i ∈ s, smulLeftCLM F (g i)
                            theorem SchwartzMap.smulLeftCLM_ofReal {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (π•œ' : Type u_10) [RCLike π•œ'] [NormedSpace π•œ' F] {g : E β†’ ℝ} (hg : Function.HasTemperateGrowth g) (f : SchwartzMap E F) :
                            (smulLeftCLM F fun (x : E) => ↑(g x)) f = (smulLeftCLM F g) f
                            theorem SchwartzMap.smulLeftCLM_real_smul {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] {π•œ' : Type u_10} [RCLike π•œ'] [NormedSpace π•œ' F] {g : E β†’ π•œ'} (hg : Function.HasTemperateGrowth g) (c : ℝ) :
                            def SchwartzMap.pairing {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) :

                            The bilinear pairing of Schwartz functions.

                            The continuity in the left argument is provided in SchwartzMap.pairing_continuous_left.

                            Equations
                            Instances For
                              theorem SchwartzMap.pairing_apply {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) (f : SchwartzMap D E) (g : SchwartzMap D F) :
                              ⇑(((pairing B) f) g) = fun (x : D) => (B (f x)) (g x)
                              @[simp]
                              theorem SchwartzMap.pairing_apply_apply {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) (f : SchwartzMap D E) (g : SchwartzMap D F) (x : D) :
                              (((pairing B) f) g) x = (B (f x)) (g x)
                              theorem SchwartzMap.pairing_continuous_left {π•œ : Type u_2} {D : Type u_4} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] [NormedSpace π•œ E] [NormedSpace π•œ G] (B : E β†’L[π•œ] F β†’L[π•œ] G) (g : SchwartzMap D F) :
                              Continuous fun (x : SchwartzMap D E) => ((pairing B) x) g

                              The pairing is continuous in the left argument.

                              Note that since 𝓒(E, F) is not a normed space, uncurried and curried continuity do not coincide.

                              Scalar multiplication with a continuous linear map as a continuous linear map on Schwartz functions.

                              Equations
                              Instances For
                                @[simp]
                                theorem SchwartzMap.smulRightCLM_apply_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} {G : Type u_7} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [NontriviallyNormedField π•œ] [NormedAlgebra ℝ π•œ] [NormedAddCommGroup G] [NormedSpace ℝ G] [NormedSpace π•œ F] (L : E β†’L[ℝ] G β†’L[ℝ] ℝ) (f : SchwartzMap E F) (x : E) :
                                ((smulRightCLM π•œ F L) f) x = (L x).smulRight (f x)
                                def SchwartzMap.compCLM (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (hg_upper : βˆƒ (k : β„•) (C : ℝ), βˆ€ (x : D), β€–xβ€– ≀ C * (1 + β€–g xβ€–) ^ k) :

                                Composition with a function on the right is a continuous linear map on Schwartz space provided that the function is temperate and growths polynomially near infinity.

                                Equations
                                Instances For
                                  @[simp]
                                  theorem SchwartzMap.compCLM_apply (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (hg_upper : βˆƒ (k : β„•) (C : ℝ), βˆ€ (x : D), β€–xβ€– ≀ C * (1 + β€–g xβ€–) ^ k) (f : SchwartzMap E F) :
                                  ⇑((compCLM π•œ hg hg_upper) f) = ⇑f ∘ g
                                  def SchwartzMap.compCLMOfAntilipschitz (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {K : NNReal} {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (h'g : AntilipschitzWith K g) :

                                  Composition with a function on the right is a continuous linear map on Schwartz space provided that the function is temperate and antilipschitz.

                                  Equations
                                  Instances For
                                    @[simp]
                                    theorem SchwartzMap.compCLMOfAntilipschitz_apply (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] {K : NNReal} {g : D β†’ E} (hg : Function.HasTemperateGrowth g) (h'g : AntilipschitzWith K g) (f : SchwartzMap E F) :
                                    ⇑((compCLMOfAntilipschitz π•œ hg h'g) f) = ⇑f ∘ g

                                    Composition with a continuous linear equiv on the right is a continuous linear map on Schwartz space.

                                    Equations
                                    Instances For
                                      @[simp]
                                      theorem SchwartzMap.compCLMOfContinuousLinearEquiv_apply (π•œ : Type u_2) {D : Type u_4} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (g : D ≃L[ℝ] E) (f : SchwartzMap E F) :
                                      ⇑((compCLMOfContinuousLinearEquiv π•œ g) f) = ⇑f ∘ ⇑g

                                      Derivatives of Schwartz functions #

                                      def SchwartzMap.derivCLM (π•œ : Type u_2) (F : Type u_6) [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] :

                                      The 1-dimensional derivative on Schwartz space as a continuous π•œ-linear map.

                                      Equations
                                      Instances For
                                        @[simp]
                                        theorem SchwartzMap.derivCLM_apply (π•œ : Type u_2) {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] (f : SchwartzMap ℝ F) (x : ℝ) :
                                        ((derivCLM π•œ F) f) x = deriv (⇑f) x
                                        theorem SchwartzMap.hasDerivAt {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap ℝ F) (x : ℝ) :
                                        HasDerivAt (⇑f) (deriv (⇑f) x) x
                                        def SchwartzMap.fderivCLM (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :

                                        The FrΓ©chet derivative on Schwartz space as a continuous π•œ-linear map.

                                        Equations
                                        Instances For
                                          @[simp]
                                          theorem SchwartzMap.fderivCLM_apply (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                          ((fderivCLM π•œ E F) f) x = fderiv ℝ (⇑f) x
                                          theorem SchwartzMap.hasFDerivAt {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] (f : SchwartzMap E F) (x : E) :
                                          HasFDerivAt (⇑f) (fderiv ℝ (⇑f) x) x

                                          The partial derivative (or directional derivative) in the direction m : E as a continuous linear map on Schwartz space.

                                          Equations
                                          instance SchwartzMap.instLineDerivSMul (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] :
                                          LineDerivSMul π•œ E (SchwartzMap E F) (SchwartzMap E F)
                                          theorem SchwartzMap.lineDerivOpCLM_eq (π•œ : Type u_2) {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (m : E) :
                                          @[deprecated LineDeriv.lineDerivOpCLM (since := "2025-11-25")]
                                          def SchwartzMap.pderivCLM (R : Type u_1) {V : Type u_2} (E : Type u_3) {F : Type u_4} [Ring R] [AddCommGroup E] [Module R E] [AddCommGroup F] [Module R F] [TopologicalSpace E] [TopologicalSpace F] [LineDeriv V E F] [LineDerivAdd V E F] [LineDerivSMul R V E F] [ContinuousLineDeriv V E F] (m : V) :

                                          Alias of LineDeriv.lineDerivOpCLM.

                                          Equations
                                          Instances For
                                            @[deprecated LineDeriv.lineDerivOpCLM_apply (since := "2025-11-25")]
                                            theorem SchwartzMap.pderivCLM_apply {R : Type u_1} {V : Type u_2} {E : Type u_3} {F : Type u_4} [Ring R] [AddCommGroup E] [Module R E] [AddCommGroup F] [Module R F] [TopologicalSpace E] [TopologicalSpace F] [LineDeriv V E F] [LineDerivAdd V E F] [LineDerivSMul R V E F] [ContinuousLineDeriv V E F] (m : V) (x : E) :

                                            Alias of LineDeriv.lineDerivOpCLM_apply.

                                            @[deprecated LineDeriv.iteratedLineDerivOpCLM (since := "2025-11-25")]
                                            def SchwartzMap.iteratedPDeriv (R : Type u_1) {V : Type u_2} (E : Type u_3) [LineDeriv V E E] [TopologicalSpace E] [Ring R] [AddCommGroup E] [Module R E] [LineDerivAdd V E E] [LineDerivSMul R V E E] [ContinuousLineDeriv V E E] {n : β„•} (m : Fin n β†’ V) :

                                            Alias of LineDeriv.iteratedLineDerivOpCLM.

                                            Equations
                                            Instances For
                                              @[deprecated LineDeriv.iteratedLineDerivOp_zero (since := "2025-11-25")]
                                              theorem SchwartzMap.iteratedPDeriv_zero {V : Type u_5} {E : Type u_6} [LineDeriv V E E] (m : Fin 0 β†’ V) (f : E) :

                                              Alias of LineDeriv.iteratedLineDerivOp_zero.

                                              @[deprecated LineDeriv.iteratedLineDerivOp_one (since := "2025-11-25")]
                                              theorem SchwartzMap.iteratedPDeriv_one {V : Type u_5} {E : Type u_6} [LineDeriv V E E] (m : Fin 1 β†’ V) (f : E) :

                                              Alias of LineDeriv.iteratedLineDerivOp_one.

                                              @[deprecated LineDeriv.iteratedLineDerivOp_succ_left (since := "2025-11-25")]
                                              theorem SchwartzMap.iteratedPDeriv_succ_left {V : Type u_5} {E : Type u_6} [LineDeriv V E E] {n : β„•} (m : Fin (n + 1) β†’ V) (f : E) :

                                              Alias of LineDeriv.iteratedLineDerivOp_succ_left.

                                              @[deprecated LineDeriv.iteratedLineDerivOp_succ_right (since := "2025-11-25")]

                                              Alias of LineDeriv.iteratedLineDerivOp_succ_right.

                                              @[deprecated SchwartzMap.iteratedLineDerivOp_eq_iteratedFDeriv (since := "2025-11-25")]

                                              Alias of SchwartzMap.iteratedLineDerivOp_eq_iteratedFDeriv.

                                              Integration #

                                              theorem SchwartzMap.integral_pow_mul_iteratedFDeriv_le (π•œ : Type u_2) {D : Type u_4} {V : Type u_9} [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedSpace π•œ V] [MeasurableSpace D] (ΞΌ : MeasureTheory.Measure D) [hΞΌ : ΞΌ.HasTemperateGrowth] (f : SchwartzMap D V) (k n : β„•) :
                                              ∫ (x : D), β€–xβ€– ^ k * β€–iteratedFDeriv ℝ n (⇑f) xβ€– βˆ‚ΞΌ ≀ (2 ^ ΞΌ.integrablePower * ∫ (x : D), (1 + β€–xβ€–) ^ (-↑μ.integrablePower) βˆ‚ΞΌ) * ((SchwartzMap.seminorm π•œ 0 n) f + (SchwartzMap.seminorm π•œ (k + ΞΌ.integrablePower) n) f)

                                              The integral as a continuous linear map from Schwartz space to the codomain.

                                              Equations
                                              Instances For
                                                @[simp]
                                                theorem SchwartzMap.integralCLM_apply (π•œ : Type u_2) {D : Type u_4} {V : Type u_9} [RCLike π•œ] [NormedAddCommGroup D] [NormedSpace ℝ D] [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedSpace π•œ V] [MeasurableSpace D] {ΞΌ : MeasureTheory.Measure D} [hΞΌ : ΞΌ.HasTemperateGrowth] [BorelSpace D] [SecondCountableTopology D] (f : SchwartzMap D V) :
                                                (integralCLM π•œ ΞΌ) f = ∫ (x : D), f x βˆ‚ΞΌ

                                                Inclusion into the space of bounded continuous functions #

                                                Schwartz functions as bounded continuous functions

                                                Equations
                                                Instances For

                                                  Schwartz functions as continuous functions

                                                  Equations
                                                  Instances For

                                                    The inclusion map from Schwartz functions to bounded continuous functions as a continuous linear map.

                                                    Equations
                                                    Instances For
                                                      @[simp]
                                                      theorem SchwartzMap.toBoundedContinuousFunctionCLM_apply (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                                      ((toBoundedContinuousFunctionCLM π•œ E F) f) x = f x

                                                      Schwartz functions as continuous functions vanishing at infinity.

                                                      Equations
                                                      • f.toZeroAtInfty = { toFun := ⇑f, continuous_toFun := β‹―, zero_at_infty' := β‹― }
                                                      Instances For

                                                        The inclusion map from Schwartz functions to continuous functions vanishing at infinity as a continuous linear map.

                                                        Equations
                                                        Instances For
                                                          @[simp]
                                                          theorem SchwartzMap.toZeroAtInftyCLM_apply (π•œ : Type u_2) (E : Type u_5) (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [ProperSpace E] [RCLike π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (f : SchwartzMap E F) (x : E) :
                                                          ((toZeroAtInftyCLM π•œ E F) f) x = f x

                                                          Inclusion into L^p space #

                                                          theorem SchwartzMap.eLpNorm_le_seminorm (π•œ : Type u_2) {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] (p : ENNReal) (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                          βˆƒ (k : β„•) (C : NNReal), βˆ€ (f : SchwartzMap E F), MeasureTheory.eLpNorm (⇑f) p ΞΌ ≀ ↑C * ENNReal.ofReal (((Finset.Iic (k, 0)).sup (schwartzSeminormFamily π•œ E F)) f)

                                                          The L^p norm of a Schwartz function is controlled by a finite family of Schwartz seminorms.

                                                          The maximum index k and the constant C depend on p and ΞΌ.

                                                          The L^p norm of a Schwartz function is finite.

                                                          Schwartz functions are in L^∞; does not require hμ.HasTemperateGrowth.

                                                          Schwartz functions are in L^p for any p.

                                                          Map a Schwartz function to an Lp function for any p.

                                                          Equations
                                                          Instances For
                                                            theorem SchwartzMap.coeFn_toLp {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [SecondCountableTopologyEither E F] (f : SchwartzMap E F) (p : ENNReal) (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                            ↑↑(f.toLp p ΞΌ) =ᡐ[ΞΌ] ⇑f
                                                            theorem SchwartzMap.norm_toLp_le_seminorm (π•œ : Type u_2) {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [SecondCountableTopologyEither E F] (p : ENNReal) (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                            βˆƒ (k : β„•) (C : ℝ), 0 ≀ C ∧ βˆ€ (f : SchwartzMap E F), β€–f.toLp p ΞΌβ€– ≀ C * ((Finset.Iic (k, 0)).sup (schwartzSeminormFamily π•œ E F)) f
                                                            def SchwartzMap.toLpCLM (π•œ : Type u_2) {E : Type u_5} (F : Type u_6) [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [SecondCountableTopologyEither E F] (p : ENNReal) [Fact (1 ≀ p)] (ΞΌ : MeasureTheory.Measure E := by volume_tac) [hΞΌ : ΞΌ.HasTemperateGrowth] :
                                                            SchwartzMap E F β†’L[π•œ] β†₯(MeasureTheory.Lp F p ΞΌ)

                                                            Continuous linear map from Schwartz functions to L^p.

                                                            Equations
                                                            Instances For
                                                              @[simp]
                                                              theorem SchwartzMap.toLpCLM_apply {π•œ : Type u_2} {E : Type u_5} {F : Type u_6} [NormedAddCommGroup E] [NormedSpace ℝ E] [NormedAddCommGroup F] [NormedSpace ℝ F] [MeasurableSpace E] [OpensMeasurableSpace E] [NormedField π•œ] [NormedSpace π•œ F] [SMulCommClass ℝ π•œ F] [SecondCountableTopologyEither E F] {p : ENNReal} [Fact (1 ≀ p)] {ΞΌ : MeasureTheory.Measure E} [hΞΌ : ΞΌ.HasTemperateGrowth] {f : SchwartzMap E F} :
                                                              (toLpCLM π•œ F p ΞΌ) f = f.toLp p ΞΌ
                                                              @[simp]
                                                              theorem SchwartzMap.inner_toL2_toL2_eq {H : Type u_8} {V : Type u_9} [NormedAddCommGroup H] [NormedSpace ℝ H] [FiniteDimensional ℝ H] [MeasurableSpace H] [BorelSpace H] [NormedAddCommGroup V] [InnerProductSpace β„‚ V] (f g : SchwartzMap H V) (ΞΌ : MeasureTheory.Measure H := by volume_tac) [ΞΌ.HasTemperateGrowth] :
                                                              inner β„‚ (f.toLp 2 ΞΌ) (g.toLp 2 ΞΌ) = ∫ (x : H), inner β„‚ (f x) (g x) βˆ‚ΞΌ

                                                              Integration by parts of Schwartz functions for the 1-dimensional derivative.

                                                              Version for a general bilinear map.

                                                              theorem SchwartzMap.integral_mul_deriv_eq_neg_deriv_mul {π•œ : Type u_2} [NormedRing π•œ] [NormedSpace ℝ π•œ] [IsScalarTower ℝ π•œ π•œ] [SMulCommClass ℝ π•œ π•œ] (f g : SchwartzMap ℝ π•œ) :
                                                              ∫ (x : ℝ), f x * deriv (⇑g) x = -∫ (x : ℝ), deriv (⇑f) x * g x

                                                              Integration by parts of Schwartz functions for the 1-dimensional derivative.

                                                              Version for multiplication of scalar-valued Schwartz functions.

                                                              theorem SchwartzMap.integral_smul_deriv_right_eq_neg_left {π•œ : Type u_2} {F : Type u_6} [NormedAddCommGroup F] [NormedSpace ℝ F] [RCLike π•œ] [NormedSpace π•œ F] (f : SchwartzMap ℝ π•œ) (g : SchwartzMap ℝ F) :
                                                              ∫ (x : ℝ), f x β€’ deriv (⇑g) x = -∫ (x : ℝ), deriv (⇑f) x β€’ g x

                                                              Integration by parts of Schwartz functions for the 1-dimensional derivative.

                                                              Version for a Schwartz function with values in continuous linear maps.

                                                              theorem SchwartzMap.integral_clm_comp_deriv_right_eq_neg_left {π•œ : Type u_2} {F : Type u_6} {V : Type u_9} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedAddCommGroup V] [NormedSpace ℝ V] [RCLike π•œ] [NormedSpace π•œ F] [NormedSpace π•œ V] (f : SchwartzMap ℝ (F β†’L[π•œ] V)) (g : SchwartzMap ℝ F) :
                                                              ∫ (x : ℝ), (f x) (deriv (⇑g) x) = -∫ (x : ℝ), (deriv (⇑f) x) (g x)

                                                              Integration by parts of Schwartz functions for the 1-dimensional derivative.

                                                              Version for a Schwartz function with values in continuous linear maps.

                                                              Integration by parts of Schwartz functions for directional derivatives.

                                                              Version for a general bilinear map.

                                                              theorem SchwartzMap.integral_mul_lineDerivOp_right_eq_neg_left {π•œ : Type u_2} {D : Type u_4} [NormedAddCommGroup D] [NormedSpace ℝ D] [MeasurableSpace D] {ΞΌ : MeasureTheory.Measure D} [BorelSpace D] [FiniteDimensional ℝ D] [ΞΌ.IsAddHaarMeasure] [NormedRing π•œ] [NormedSpace ℝ π•œ] [IsScalarTower ℝ π•œ π•œ] [SMulCommClass ℝ π•œ π•œ] (f g : SchwartzMap D π•œ) (v : D) :
                                                              ∫ (x : D), f x * (LineDeriv.lineDerivOp v g) x βˆ‚ΞΌ = -∫ (x : D), (LineDeriv.lineDerivOp v f) x * g x βˆ‚ΞΌ

                                                              Integration by parts of Schwartz functions for directional derivatives.

                                                              Version for multiplication of scalar-valued Schwartz functions.

                                                              Integration by parts of Schwartz functions for directional derivatives.

                                                              Version for scalar multiplication.

                                                              theorem SchwartzMap.integral_clm_comp_lineDerivOp_right_eq_neg_left {π•œ : Type u_2} {D : Type u_4} {F : Type u_6} {V : Type u_9} [NormedAddCommGroup F] [NormedSpace ℝ F] [NormedAddCommGroup V] [NormedSpace ℝ V] [NormedAddCommGroup D] [NormedSpace ℝ D] [MeasurableSpace D] {ΞΌ : MeasureTheory.Measure D} [BorelSpace D] [FiniteDimensional ℝ D] [ΞΌ.IsAddHaarMeasure] [RCLike π•œ] [NormedSpace π•œ F] [NormedSpace π•œ V] (f : SchwartzMap D (F β†’L[π•œ] V)) (g : SchwartzMap D F) (v : D) :
                                                              ∫ (x : D), (f x) ((LineDeriv.lineDerivOp v g) x) βˆ‚ΞΌ = -∫ (x : D), ((LineDeriv.lineDerivOp v f) x) (g x) βˆ‚ΞΌ

                                                              Integration by parts of Schwartz functions for directional derivatives.

                                                              Version for a Schwartz function with values in continuous linear maps.