Documentation

Mathlib.Analysis.InnerProductSpace.Adjoint

Adjoint of operators on Hilbert spaces #

Given an operator A : E →L[𝕜] F, where E and F are Hilbert spaces, its adjoint adjoint A : F →L[𝕜] E is the unique operator such that ⟪x, A y⟫ = ⟪adjoint A x, y⟫ for all x and y.

We then use this to put a C⋆-algebra structure on E →L[𝕜] E with the adjoint as the star operation.

This construction is used to define an adjoint for linear maps (i.e. not continuous) between finite dimensional spaces.

Main definitions #

Implementation notes #

Tags #

adjoint

Adjoint operator #

noncomputable def ContinuousLinearMap.adjointAux {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] :
(E →L[𝕜] F) →L⋆[𝕜] F →L[𝕜] E

The adjoint, as a continuous conjugate-linear map. This is only meant as an auxiliary definition for the main definition adjoint, where this is bundled as a conjugate-linear isometric equivalence.

Equations
  • One or more equations did not get rendered due to their size.
Instances For
    @[simp]
    theorem ContinuousLinearMap.adjointAux_apply {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : F) :
    theorem ContinuousLinearMap.adjointAux_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : E) (y : F) :
    inner ((adjointAux A) y) x = inner y (A x)
    theorem ContinuousLinearMap.adjointAux_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] (A : E →L[𝕜] F) (x : E) (y : F) :
    inner x ((adjointAux A) y) = inner (A x) y
    def ContinuousLinearMap.adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] :
    (E →L[𝕜] F) ≃ₗᵢ⋆[𝕜] F →L[𝕜] E

    The adjoint of a bounded operator A from a Hilbert space E to another Hilbert space F, denoted as A†.

    Equations
    Instances For

      The adjoint of a bounded operator A from a Hilbert space E to another Hilbert space F, denoted as A†.

      Equations
      Instances For
        theorem ContinuousLinearMap.adjoint_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) (y : F) :
        inner ((adjoint A) y) x = inner y (A x)

        The fundamental property of the adjoint.

        theorem ContinuousLinearMap.adjoint_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) (y : F) :
        inner x ((adjoint A) y) = inner (A x) y

        The fundamental property of the adjoint.

        @[simp]
        theorem ContinuousLinearMap.adjoint_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) :

        The adjoint is involutive.

        @[simp]
        theorem ContinuousLinearMap.adjoint_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [InnerProductSpace 𝕜 G] [CompleteSpace E] [CompleteSpace G] [CompleteSpace F] (A : F →L[𝕜] G) (B : E →L[𝕜] F) :

        The adjoint of the composition of two operators is the composition of the two adjoints in reverse order.

        theorem ContinuousLinearMap.apply_norm_sq_eq_inner_adjoint_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) :
        A x ^ 2 = RCLike.re (inner (((adjoint A).comp A) x) x)
        theorem ContinuousLinearMap.apply_norm_sq_eq_inner_adjoint_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (x : E) :
        A x ^ 2 = RCLike.re (inner x (((adjoint A).comp A) x))
        theorem ContinuousLinearMap.eq_adjoint_iff {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] (A : E →L[𝕜] F) (B : F →L[𝕜] E) :
        A = adjoint B ∀ (x : E) (y : F), inner (A x) y = inner x (B y)

        The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all x and y.

        @[simp]
        theorem ContinuousLinearMap.adjoint_id {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
        adjoint (id 𝕜 E) = id 𝕜 E
        instance ContinuousLinearMap.instStarId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
        Star (E →L[𝕜] E)

        E →L[𝕜] E is a star algebra with the adjoint as the star operation.

        Equations
        instance ContinuousLinearMap.instStarModuleId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
        StarModule 𝕜 (E →L[𝕜] E)
        theorem ContinuousLinearMap.star_eq_adjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] (A : E →L[𝕜] E) :
        theorem ContinuousLinearMap.isSelfAdjoint_iff' {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} :

        A continuous linear operator is self-adjoint iff it is equal to its adjoint.

        instance ContinuousLinearMap.instCStarRingId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] :
        CStarRing (E →L[𝕜] E)

        The C⋆-algebra instance when 𝕜 := ℂ can be found in Analysis.CStarAlgebra.ContinuousLinearMap.

        Self-adjoint operators #

        theorem IsSelfAdjoint.adjoint_eq {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} (hA : IsSelfAdjoint A) :
        theorem IsSelfAdjoint.isSymmetric {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} (hA : IsSelfAdjoint A) :

        Every self-adjoint operator on an inner product space is symmetric.

        theorem IsSelfAdjoint.conj_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) (S : E →L[𝕜] F) :

        Conjugating preserves self-adjointness.

        theorem IsSelfAdjoint.adjoint_conj {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [CompleteSpace E] [CompleteSpace F] {T : E →L[𝕜] E} (hT : IsSelfAdjoint T) (S : F →L[𝕜] E) :

        Conjugating preserves self-adjointness.

        theorem LinearMap.IsSymmetric.isSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {A : E →L[𝕜] E} (hA : (↑A).IsSymmetric) :

        The orthogonal projection is self-adjoint.

        def LinearMap.IsSymmetric.toSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →ₗ[𝕜] E} (hT : T.IsSymmetric) :
        (selfAdjoint (E →L[𝕜] E))

        The Hellinger--Toeplitz theorem: Construct a self-adjoint operator from an everywhere defined symmetric operator.

        Equations
        Instances For
          theorem LinearMap.IsSymmetric.coe_toSelfAdjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →ₗ[𝕜] E} (hT : T.IsSymmetric) :
          hT.toSelfAdjoint = T
          theorem LinearMap.IsSymmetric.toSelfAdjoint_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [CompleteSpace E] {T : E →ₗ[𝕜] E} (hT : T.IsSymmetric) {x : E} :
          hT.toSelfAdjoint x = T x
          def LinearMap.adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] :
          (E →ₗ[𝕜] F) ≃ₗ⋆[𝕜] F →ₗ[𝕜] E

          The adjoint of an operator from the finite-dimensional inner product space E to the finite-dimensional inner product space F.

          Equations
          Instances For
            theorem LinearMap.adjoint_inner_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (x : E) (y : F) :
            inner ((adjoint A) y) x = inner y (A x)

            The fundamental property of the adjoint.

            theorem LinearMap.adjoint_inner_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (x : E) (y : F) :
            inner x ((adjoint A) y) = inner (A x) y

            The fundamental property of the adjoint.

            @[simp]
            theorem LinearMap.adjoint_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) :

            The adjoint is involutive.

            @[simp]
            theorem LinearMap.adjoint_comp {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} {G : Type u_4} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [NormedAddCommGroup G] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [InnerProductSpace 𝕜 G] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] [FiniteDimensional 𝕜 G] (A : F →ₗ[𝕜] G) (B : E →ₗ[𝕜] F) :

            The adjoint of the composition of two operators is the composition of the two adjoints in reverse order.

            theorem LinearMap.eq_adjoint_iff {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
            A = adjoint B ∀ (x : E) (y : F), inner (A x) y = inner x (B y)

            The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all x and y.

            theorem LinearMap.eq_adjoint_iff_basis {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι₁ : Type u_5} {ι₂ : Type u_6} (b₁ : Basis ι₁ 𝕜 E) (b₂ : Basis ι₂ 𝕜 F) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
            A = adjoint B ∀ (i₁ : ι₁) (i₂ : ι₂), inner (A (b₁ i₁)) (b₂ i₂) = inner (b₁ i₁) (B (b₂ i₂))

            The adjoint is unique: a map A is the adjoint of B iff it satisfies ⟪A x, y⟫ = ⟪x, B y⟫ for all basis vectors x and y.

            theorem LinearMap.eq_adjoint_iff_basis_left {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι : Type u_5} (b : Basis ι 𝕜 E) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
            A = adjoint B ∀ (i : ι) (y : F), inner (A (b i)) y = inner (b i) (B y)
            theorem LinearMap.eq_adjoint_iff_basis_right {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] {ι : Type u_5} (b : Basis ι 𝕜 F) (A : E →ₗ[𝕜] F) (B : F →ₗ[𝕜] E) :
            A = adjoint B ∀ (i : ι) (x : E), inner (A x) (b i) = inner x (B (b i))
            instance LinearMap.instStarId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
            Star (E →ₗ[𝕜] E)

            E →ₗ[𝕜] E is a star algebra with the adjoint as the star operation.

            Equations
            instance LinearMap.instStarModuleId {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
            StarModule 𝕜 (E →ₗ[𝕜] E)
            theorem LinearMap.star_eq_adjoint {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (A : E →ₗ[𝕜] E) :
            theorem LinearMap.isSelfAdjoint_iff' {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {A : E →ₗ[𝕜] E} :

            A continuous linear operator is self-adjoint iff it is equal to its adjoint.

            theorem LinearMap.isSymmetric_adjoint_mul_self {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) :

            The Gram operator T†T is symmetric.

            theorem LinearMap.re_inner_adjoint_mul_self_nonneg {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) (x : E) :
            0 RCLike.re (inner x ((adjoint T * T) x))

            The Gram operator T†T is a positive operator.

            @[simp]
            theorem LinearMap.im_inner_adjoint_mul_self_eq_zero {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] (T : E →ₗ[𝕜] E) (x : E) :
            RCLike.im (inner x ((adjoint T) (T x))) = 0
            theorem ContinuousLinearMap.inner_map_map_iff_adjoint_comp_self {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {K : Type u_6} [NormedAddCommGroup K] [InnerProductSpace 𝕜 K] [CompleteSpace K] (u : H →L[𝕜] K) :
            (∀ (x y : H), inner (u x) (u y) = inner x y) (adjoint u).comp u = 1
            theorem ContinuousLinearMap.norm_map_iff_adjoint_comp_self {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {K : Type u_6} [NormedAddCommGroup K] [InnerProductSpace 𝕜 K] [CompleteSpace K] (u : H →L[𝕜] K) :
            (∀ (x : H), u x = x) (adjoint u).comp u = 1
            @[simp]
            theorem LinearIsometryEquiv.adjoint_eq_symm {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {K : Type u_6} [NormedAddCommGroup K] [InnerProductSpace 𝕜 K] [CompleteSpace K] (e : H ≃ₗᵢ[𝕜] K) :
            ContinuousLinearMap.adjoint { toLinearEquiv := e.toLinearEquiv, continuous_toFun := , continuous_invFun := } = { toLinearEquiv := e.symm.toLinearEquiv, continuous_toFun := , continuous_invFun := }
            @[simp]
            theorem LinearIsometryEquiv.star_eq_symm {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (e : H ≃ₗᵢ[𝕜] H) :
            star { toLinearEquiv := e.toLinearEquiv, continuous_toFun := , continuous_invFun := } = { toLinearEquiv := e.symm.toLinearEquiv, continuous_toFun := , continuous_invFun := }
            theorem ContinuousLinearMap.norm_map_of_mem_unitary {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {u : H →L[𝕜] H} (hu : u unitary (H →L[𝕜] H)) (x : H) :
            theorem ContinuousLinearMap.inner_map_map_of_mem_unitary {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] {u : H →L[𝕜] H} (hu : u unitary (H →L[𝕜] H)) (x y : H) :
            inner (u x) (u y) = inner x y
            theorem unitary.norm_map {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (u : (unitary (H →L[𝕜] H))) (x : H) :
            u x = x
            theorem unitary.inner_map_map {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (u : (unitary (H →L[𝕜] H))) (x y : H) :
            inner (u x) (u y) = inner x y
            noncomputable def unitary.linearIsometryEquiv {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] :
            (unitary (H →L[𝕜] H)) ≃* (H ≃ₗᵢ[𝕜] H)

            The unitary elements of continuous linear maps on a Hilbert space coincide with the linear isometric equivalences on that Hilbert space.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              @[simp]
              theorem unitary.linearIsometryEquiv_coe_apply {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (u : (unitary (H →L[𝕜] H))) :
              { toLinearEquiv := (linearIsometryEquiv u).toLinearEquiv, continuous_toFun := , continuous_invFun := } = u
              @[simp]
              theorem unitary.linearIsometryEquiv_coe_symm_apply {𝕜 : Type u_1} [RCLike 𝕜] {H : Type u_5} [NormedAddCommGroup H] [InnerProductSpace 𝕜 H] [CompleteSpace H] (e : H ≃ₗᵢ[𝕜] H) :
              (linearIsometryEquiv.symm e) = { toLinearEquiv := e.toLinearEquiv, continuous_toFun := , continuous_invFun := }
              theorem Matrix.toLin_conjTranspose {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (v₁ : OrthonormalBasis n 𝕜 E) (v₂ : OrthonormalBasis m 𝕜 F) (A : Matrix m n 𝕜) :

              The linear map associated to the conjugate transpose of a matrix corresponding to two orthonormal bases is the adjoint of the linear map associated to the matrix.

              theorem LinearMap.toMatrix_adjoint {𝕜 : Type u_1} {E : Type u_2} {F : Type u_3} [RCLike 𝕜] [NormedAddCommGroup E] [NormedAddCommGroup F] [InnerProductSpace 𝕜 E] [InnerProductSpace 𝕜 F] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] [FiniteDimensional 𝕜 F] (v₁ : OrthonormalBasis n 𝕜 E) (v₂ : OrthonormalBasis m 𝕜 F) (f : E →ₗ[𝕜] F) :

              The matrix associated to the adjoint of a linear map corresponding to two orthonormal bases is the conjugate transpose of the matrix associated to the linear map.

              def LinearMap.toMatrixOrthonormal {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) :
              (E →ₗ[𝕜] E) ≃⋆ₐ[𝕜] Matrix n n 𝕜

              The star algebra equivalence between the linear endomorphisms of finite-dimensional inner product space and square matrices induced by the choice of an orthonormal basis.

              Equations
              • One or more equations did not get rendered due to their size.
              Instances For
                @[simp]
                theorem LinearMap.toMatrixOrthonormal_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (a✝ : E →ₗ[𝕜] E) :
                (toMatrixOrthonormal v₁) a✝ = (↑(toMatrix v₁.toBasis v₁.toBasis)).toFun a✝
                @[simp]
                theorem LinearMap.toMatrixOrthonormal_symm_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (a✝ : Matrix n n 𝕜) :
                (toMatrixOrthonormal v₁).symm a✝ = (toMatrix v₁.toBasis v₁.toBasis).invFun a✝
                theorem LinearMap.toMatrixOrthonormal_apply_apply {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {n : Type u_6} [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (f : E →ₗ[𝕜] E) (i j : n) :
                (toMatrixOrthonormal v₁) f i j = inner (v₁ i) (f (v₁ j))
                theorem LinearMap.toMatrixOrthonormal_reindex {𝕜 : Type u_1} {E : Type u_2} [RCLike 𝕜] [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {m : Type u_5} {n : Type u_6} [Fintype m] [DecidableEq m] [Fintype n] [DecidableEq n] [FiniteDimensional 𝕜 E] (v₁ : OrthonormalBasis n 𝕜 E) (e : n m) (f : E →ₗ[𝕜] E) :

                The adjoint of the linear map associated to a matrix is the linear map associated to the conjugate transpose of that matrix.