Documentation

Mathlib.Analysis.InnerProductSpace.PiL2

inner product space structure on finite products of inner product spaces #

The norm on a finite product of inner product spaces is compatible with an inner product $$ \langle x, y\rangle = \sum \langle x_i, y_i \rangle. $$ This is recorded in this file as an inner product space instance on PiLp 2.

This file develops the notion of a finite dimensional Hilbert space over 𝕜 = ℂ, ℝ, referred to as E. We define an OrthonormalBasis 𝕜 ι E as a linear isometric equivalence between E and EuclideanSpace 𝕜 ι. Then stdOrthonormalBasis shows that such an equivalence always exists if E is finite dimensional. We provide language for converting between a basis that is orthonormal and an orthonormal basis (e.g. Basis.toOrthonormalBasis). We show that orthonormal bases for each summand in a direct sum of spaces can be combined into an orthonormal basis for the whole sum in DirectSum.IsInternal.subordinateOrthonormalBasis. In the last section, various properties of matrices are explored.

Main definitions #

For consequences in infinite dimension (Hilbert bases, etc.), see the file Analysis.InnerProductSpace.L2Space.

instance PiLp.innerProductSpace {𝕜 : Type u_3} [IsROrC 𝕜] {ι : Type u_8} [Fintype ι] (f : ιType u_9) [(i : ι) → NormedAddCommGroup (f i)] [(i : ι) → InnerProductSpace 𝕜 (f i)] :
@[simp]
theorem PiLp.inner_apply {𝕜 : Type u_3} [IsROrC 𝕜] {ι : Type u_8} [Fintype ι] {f : ιType u_9} [(i : ι) → NormedAddCommGroup (f i)] [(i : ι) → InnerProductSpace 𝕜 (f i)] (x : PiLp 2 f) (y : PiLp 2 f) :
inner x y = Finset.sum Finset.univ fun i => inner (x i) (y i)
@[reducible]
def EuclideanSpace (𝕜 : Type u_8) [IsROrC 𝕜] (n : Type u_9) [Fintype n] :
Type (max u_9 u_8)

The standard real/complex Euclidean space, functions on a finite type. For an n-dimensional space use EuclideanSpace 𝕜 (Fin n).

Instances For
    theorem EuclideanSpace.nnnorm_eq {𝕜 : Type u_8} [IsROrC 𝕜] {n : Type u_9} [Fintype n] (x : EuclideanSpace 𝕜 n) :
    x‖₊ = NNReal.sqrt (Finset.sum Finset.univ fun i => x i‖₊ ^ 2)
    theorem EuclideanSpace.norm_eq {𝕜 : Type u_8} [IsROrC 𝕜] {n : Type u_9} [Fintype n] (x : EuclideanSpace 𝕜 n) :
    x = Real.sqrt (Finset.sum Finset.univ fun i => x i ^ 2)
    theorem EuclideanSpace.dist_eq {𝕜 : Type u_8} [IsROrC 𝕜] {n : Type u_9} [Fintype n] (x : EuclideanSpace 𝕜 n) (y : EuclideanSpace 𝕜 n) :
    dist x y = Real.sqrt (Finset.sum Finset.univ fun i => dist (x i) (y i) ^ 2)
    theorem EuclideanSpace.nndist_eq {𝕜 : Type u_8} [IsROrC 𝕜] {n : Type u_9} [Fintype n] (x : EuclideanSpace 𝕜 n) (y : EuclideanSpace 𝕜 n) :
    nndist x y = NNReal.sqrt (Finset.sum Finset.univ fun i => nndist (x i) (y i) ^ 2)
    theorem EuclideanSpace.edist_eq {𝕜 : Type u_8} [IsROrC 𝕜] {n : Type u_9} [Fintype n] (x : EuclideanSpace 𝕜 n) (y : EuclideanSpace 𝕜 n) :
    edist x y = (Finset.sum Finset.univ fun i => edist (x i) (y i) ^ 2) ^ (1 / 2)
    instance EuclideanSpace.instFiniteDimensional {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] :
    instance EuclideanSpace.instInnerProductSpace {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] :
    @[simp]
    theorem finrank_euclideanSpace {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] :
    theorem finrank_euclideanSpace_fin {𝕜 : Type u_3} [IsROrC 𝕜] {n : } :
    theorem EuclideanSpace.inner_eq_star_dotProduct {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] (x : EuclideanSpace 𝕜 ι) (y : EuclideanSpace 𝕜 ι) :
    inner x y = Matrix.dotProduct (star (↑(WithLp.equiv 2 ((i : ι) → (fun x => 𝕜) i)) x)) (↑(WithLp.equiv 2 ((i : ι) → (fun x => 𝕜) i)) y)
    theorem EuclideanSpace.inner_piLp_equiv_symm {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] (x : ι𝕜) (y : ι𝕜) :
    inner ((WithLp.equiv 2 (ι𝕜)).symm x) ((WithLp.equiv 2 (ι𝕜)).symm y) = Matrix.dotProduct (star x) y
    def DirectSum.IsInternal.isometryL2OfOrthogonalFamily {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) :
    E ≃ₗᵢ[𝕜] PiLp 2 fun i => { x // x V i }

    A finite, mutually orthogonal family of subspaces of E, which span E, induce an isometry from E to PiLp 2 of the subspaces equipped with the L2 inner product.

    Instances For
      @[simp]
      theorem DirectSum.IsInternal.isometryL2OfOrthogonalFamily_symm_apply {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) (w : PiLp 2 fun i => { x // x V i }) :
      @[inline, reducible]
      abbrev EuclideanSpace.equiv (ι : Type u_1) (𝕜 : Type u_3) [IsROrC 𝕜] [Fintype ι] :
      EuclideanSpace 𝕜 ι ≃L[𝕜] ι𝕜

      A shorthand for PiLp.continuousLinearEquiv.

      Instances For
        @[simp]
        theorem EuclideanSpace.projₗ_apply {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] (i : ι) :
        ∀ (a : WithLp 2 (ι𝕜)), ↑(EuclideanSpace.projₗ i) a = a i
        def EuclideanSpace.projₗ {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] (i : ι) :
        EuclideanSpace 𝕜 ι →ₗ[𝕜] 𝕜

        The projection on the i-th coordinate of EuclideanSpace 𝕜 ι, as a linear map.

        Instances For
          @[simp]
          theorem EuclideanSpace.proj_apply {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] (i : ι) :
          ∀ (a : WithLp 2 (ι𝕜)), ↑(EuclideanSpace.proj i) a = a i
          @[simp]
          theorem EuclideanSpace.proj_coe {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] (i : ι) :
          def EuclideanSpace.proj {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] (i : ι) :
          EuclideanSpace 𝕜 ι →L[𝕜] 𝕜

          The projection on the i-th coordinate of EuclideanSpace 𝕜 ι, as a continuous linear map.

          Instances For
            def EuclideanSpace.single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) :

            The vector given in euclidean space by being 1 : 𝕜 at coordinate i : ι and 0 : 𝕜 at all other coordinates.

            Instances For
              @[simp]
              theorem WithLp.equiv_single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) :
              ↑(WithLp.equiv 2 ((i : ι) → (fun x => 𝕜) i)) (EuclideanSpace.single i a) = Pi.single i a
              @[simp]
              theorem WithLp.equiv_symm_single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) :
              (WithLp.equiv 2 ((j : ι) → (fun x => 𝕜) j)).symm (Pi.single i a) = EuclideanSpace.single i a
              @[simp]
              theorem EuclideanSpace.single_apply {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) (j : ι) :
              EuclideanSpace.single i a j = if j = i then a else 0
              theorem EuclideanSpace.inner_single_left {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) (v : EuclideanSpace 𝕜 ι) :
              inner (EuclideanSpace.single i a) v = ↑(starRingEnd 𝕜) a * v i
              theorem EuclideanSpace.inner_single_right {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) (v : EuclideanSpace 𝕜 ι) :
              inner v (EuclideanSpace.single i a) = a * ↑(starRingEnd ((fun x => 𝕜) i)) (v i)
              @[simp]
              theorem EuclideanSpace.norm_single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) :
              @[simp]
              theorem EuclideanSpace.nnnorm_single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) :
              @[simp]
              theorem EuclideanSpace.dist_single_same {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) (b : 𝕜) :
              @[simp]
              theorem EuclideanSpace.nndist_single_same {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) (b : 𝕜) :
              @[simp]
              theorem EuclideanSpace.edist_single_same {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) (a : 𝕜) (b : 𝕜) :
              theorem EuclideanSpace.orthonormal_single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] :

              EuclideanSpace.single forms an orthonormal family.

              theorem EuclideanSpace.piLpCongrLeft_single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] {ι' : Type u_8} [Fintype ι'] [DecidableEq ι'] (e : ι' ι) (i' : ι') (v : 𝕜) :
              structure OrthonormalBasis (ι : Type u_1) (𝕜 : Type u_3) [IsROrC 𝕜] (E : Type u_4) [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] :
              Type (max (max u_1 u_3) u_4)

              An orthonormal basis on E is an identification of E with its dimensional-matching EuclideanSpace 𝕜 ι.

              Instances For
                theorem OrthonormalBasis.repr_injective {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] :
                Function.Injective OrthonormalBasis.repr
                instance OrthonormalBasis.instFunLike {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] :
                FunLike (OrthonormalBasis ι 𝕜 E) ι fun x => E

                b i is the ith basis vector.

                @[simp]
                theorem OrthonormalBasis.coe_ofRepr {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [DecidableEq ι] (e : E ≃ₗᵢ[𝕜] EuclideanSpace 𝕜 ι) :
                { repr := e } = fun i => ↑(LinearIsometryEquiv.symm e) (EuclideanSpace.single i 1)
                @[simp]
                theorem OrthonormalBasis.repr_symm_single {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [DecidableEq ι] (b : OrthonormalBasis ι 𝕜 E) (i : ι) :
                @[simp]
                theorem OrthonormalBasis.repr_self {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [DecidableEq ι] (b : OrthonormalBasis ι 𝕜 E) (i : ι) :
                b.repr (b i) = EuclideanSpace.single i 1
                theorem OrthonormalBasis.repr_apply_apply {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) (v : E) (i : ι) :
                b.repr v i = inner (b i) v
                @[simp]
                theorem OrthonormalBasis.orthonormal {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) :
                Orthonormal 𝕜 b
                def OrthonormalBasis.toBasis {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) :
                Basis ι 𝕜 E

                The Basis ι 𝕜 E underlying the OrthonormalBasis

                Instances For
                  @[simp]
                  theorem OrthonormalBasis.coe_toBasis {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) :
                  @[simp]
                  theorem OrthonormalBasis.coe_toBasis_repr {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) :
                  Basis.equivFun (OrthonormalBasis.toBasis b) = b.repr.toLinearEquiv
                  @[simp]
                  theorem OrthonormalBasis.coe_toBasis_repr_apply {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) (x : E) (i : ι) :
                  ↑((OrthonormalBasis.toBasis b).repr x) i = b.repr x i
                  theorem OrthonormalBasis.sum_repr {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) (x : E) :
                  (Finset.sum Finset.univ fun i => b.repr x i b i) = x
                  theorem OrthonormalBasis.sum_repr_symm {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) (v : EuclideanSpace 𝕜 ι) :
                  (Finset.sum Finset.univ fun i => v i b i) = ↑(LinearIsometryEquiv.symm b.repr) v
                  theorem OrthonormalBasis.sum_inner_mul_inner {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (b : OrthonormalBasis ι 𝕜 E) (x : E) (y : E) :
                  (Finset.sum Finset.univ fun i => inner x (b i) * inner (b i) y) = inner x y
                  theorem OrthonormalBasis.orthogonalProjection_eq_sum {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {U : Submodule 𝕜 E} [CompleteSpace { x // x U }] (b : OrthonormalBasis ι 𝕜 { x // x U }) (x : E) :
                  ↑(orthogonalProjection U) x = Finset.sum Finset.univ fun i => inner (↑(b i)) x b i
                  def OrthonormalBasis.map {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {G : Type u_8} [NormedAddCommGroup G] [InnerProductSpace 𝕜 G] (b : OrthonormalBasis ι 𝕜 E) (L : E ≃ₗᵢ[𝕜] G) :

                  Mapping an orthonormal basis along a LinearIsometryEquiv.

                  Instances For
                    @[simp]
                    theorem OrthonormalBasis.map_apply {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {G : Type u_8} [NormedAddCommGroup G] [InnerProductSpace 𝕜 G] (b : OrthonormalBasis ι 𝕜 E) (L : E ≃ₗᵢ[𝕜] G) (i : ι) :
                    ↑(OrthonormalBasis.map b L) i = L (b i)
                    @[simp]
                    theorem OrthonormalBasis.toBasis_map {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {G : Type u_8} [NormedAddCommGroup G] [InnerProductSpace 𝕜 G] (b : OrthonormalBasis ι 𝕜 E) (L : E ≃ₗᵢ[𝕜] G) :
                    def Basis.toOrthonormalBasis {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (v : Basis ι 𝕜 E) (hv : Orthonormal 𝕜 v) :

                    A basis that is orthonormal is an orthonormal basis.

                    Instances For
                      @[simp]
                      theorem Basis.coe_toOrthonormalBasis_repr {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (v : Basis ι 𝕜 E) (hv : Orthonormal 𝕜 v) :
                      @[simp]
                      theorem Basis.coe_toOrthonormalBasis_repr_symm {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (v : Basis ι 𝕜 E) (hv : Orthonormal 𝕜 v) :
                      @[simp]
                      theorem Basis.toBasis_toOrthonormalBasis {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (v : Basis ι 𝕜 E) (hv : Orthonormal 𝕜 v) :
                      @[simp]
                      theorem Basis.coe_toOrthonormalBasis {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] (v : Basis ι 𝕜 E) (hv : Orthonormal 𝕜 v) :
                      def OrthonormalBasis.mk {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {v : ιE} (hon : Orthonormal 𝕜 v) (hsp : Submodule.span 𝕜 (Set.range v)) :

                      A finite orthonormal set that spans is an orthonormal basis

                      Instances For
                        @[simp]
                        theorem OrthonormalBasis.coe_mk {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {v : ιE} (hon : Orthonormal 𝕜 v) (hsp : Submodule.span 𝕜 (Set.range v)) :
                        ↑(OrthonormalBasis.mk hon hsp) = v
                        def OrthonormalBasis.span {ι' : Type u_2} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [DecidableEq E] {v' : ι'E} (h : Orthonormal 𝕜 v') (s : Finset ι') :
                        OrthonormalBasis { x // x s } 𝕜 { x // x Submodule.span 𝕜 ↑(Finset.image v' s) }

                        Any finite subset of an orthonormal family is an OrthonormalBasis for its span.

                        Instances For
                          @[simp]
                          theorem OrthonormalBasis.span_apply {ι' : Type u_2} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [DecidableEq E] {v' : ι'E} (h : Orthonormal 𝕜 v') (s : Finset ι') (i : { x // x s }) :
                          ↑(↑(OrthonormalBasis.span h s) i) = v' i
                          def OrthonormalBasis.mkOfOrthogonalEqBot {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {v : ιE} (hon : Orthonormal 𝕜 v) (hsp : (Submodule.span 𝕜 (Set.range v)) = ) :

                          A finite orthonormal family of vectors whose span has trivial orthogonal complement is an orthonormal basis.

                          Instances For
                            @[simp]
                            theorem OrthonormalBasis.coe_of_orthogonal_eq_bot_mk {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {v : ιE} (hon : Orthonormal 𝕜 v) (hsp : (Submodule.span 𝕜 (Set.range v)) = ) :
                            def OrthonormalBasis.reindex {ι : Type u_1} {ι' : Type u_2} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [Fintype ι'] (b : OrthonormalBasis ι 𝕜 E) (e : ι ι') :
                            OrthonormalBasis ι' 𝕜 E

                            b.reindex (e : ι ≃ ι') is an OrthonormalBasis indexed by ι'

                            Instances For
                              theorem OrthonormalBasis.reindex_apply {ι : Type u_1} {ι' : Type u_2} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [Fintype ι'] (b : OrthonormalBasis ι 𝕜 E) (e : ι ι') (i' : ι') :
                              ↑(OrthonormalBasis.reindex b e) i' = b (e.symm i')
                              @[simp]
                              theorem OrthonormalBasis.coe_reindex {ι : Type u_1} {ι' : Type u_2} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [Fintype ι'] (b : OrthonormalBasis ι 𝕜 E) (e : ι ι') :
                              ↑(OrthonormalBasis.reindex b e) = b e.symm
                              @[simp]
                              theorem OrthonormalBasis.repr_reindex {ι : Type u_1} {ι' : Type u_2} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [Fintype ι'] (b : OrthonormalBasis ι 𝕜 E) (e : ι ι') (x : E) (i' : ι') :
                              (OrthonormalBasis.reindex b e).repr x i' = b.repr x (e.symm i')
                              noncomputable def EuclideanSpace.basisFun (ι : Type u_1) (𝕜 : Type u_3) [IsROrC 𝕜] [Fintype ι] :

                              The basis Pi.basisFun, bundled as an orthornormal basis of EuclideanSpace 𝕜 ι.

                              Instances For
                                @[simp]
                                theorem EuclideanSpace.basisFun_apply (ι : Type u_1) (𝕜 : Type u_3) [IsROrC 𝕜] [Fintype ι] [DecidableEq ι] (i : ι) :
                                @[simp]
                                theorem EuclideanSpace.basisFun_repr (ι : Type u_1) (𝕜 : Type u_3) [IsROrC 𝕜] [Fintype ι] (x : EuclideanSpace 𝕜 ι) (i : ι) :
                                (EuclideanSpace.basisFun ι 𝕜).repr x i = x i
                                instance OrthonormalBasis.instInhabited {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] [Fintype ι] :

                                ![1, I] is an orthonormal basis for considered as a real inner product space.

                                Instances For

                                  The isometry between and a two-dimensional real inner product space given by a basis.

                                  Instances For

                                    Matrix representation of an orthonormal basis with respect to another #

                                    The change-of-basis matrix between two orthonormal bases a, b is a unitary matrix.

                                    @[simp]
                                    theorem OrthonormalBasis.det_to_matrix_orthonormalBasis {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [DecidableEq ι] (a : OrthonormalBasis ι 𝕜 E) (b : OrthonormalBasis ι 𝕜 E) :

                                    The determinant of the change-of-basis matrix between two orthonormal bases a, b has unit length.

                                    The change-of-basis matrix between two orthonormal bases a, b is an orthogonal matrix.

                                    The determinant of the change-of-basis matrix between two orthonormal bases a, b is ±1.

                                    Existence of orthonormal basis, etc. #

                                    noncomputable def DirectSum.IsInternal.collectedOrthonormalBasis {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {A : ιSubmodule 𝕜 E} (hV : OrthogonalFamily 𝕜 (fun i => { x // x A i }) fun i => Submodule.subtypeₗᵢ (A i)) [DecidableEq ι] (hV_sum : DirectSum.IsInternal fun i => A i) {α : ιType u_8} [(i : ι) → Fintype (α i)] (v_family : (i : ι) → OrthonormalBasis (α i) 𝕜 { x // x A i }) :
                                    OrthonormalBasis ((i : ι) × α i) 𝕜 E

                                    Given an internal direct sum decomposition of a module M, and an orthonormal basis for each of the components of the direct sum, the disjoint union of these orthonormal bases is an orthonormal basis for M.

                                    Instances For
                                      theorem DirectSum.IsInternal.collectedOrthonormalBasis_mem {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] {A : ιSubmodule 𝕜 E} [DecidableEq ι] (h : DirectSum.IsInternal A) {α : ιType u_8} [(i : ι) → Fintype (α i)] (hV : OrthogonalFamily 𝕜 (fun i => { x // x A i }) fun i => Submodule.subtypeₗᵢ (A i)) (v : (i : ι) → OrthonormalBasis (α i) 𝕜 { x // x A i }) (a : (i : ι) × α i) :
                                      theorem Orthonormal.exists_orthonormalBasis_extension {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] {v : Set E} [FiniteDimensional 𝕜 E] (hv : Orthonormal 𝕜 Subtype.val) :
                                      u b, v u b = Subtype.val

                                      In a finite-dimensional InnerProductSpace, any orthonormal subset can be extended to an orthonormal basis.

                                      theorem Orthonormal.exists_orthonormalBasis_extension_of_card_eq {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] {ι : Type u_8} [Fintype ι] (card_ι : FiniteDimensional.finrank 𝕜 E = Fintype.card ι) {v : ιE} {s : Set ι} (hv : Orthonormal 𝕜 (Set.restrict s v)) :
                                      b, ∀ (i : ι), i sb i = v i
                                      theorem exists_orthonormalBasis (𝕜 : Type u_3) [IsROrC 𝕜] (E : Type u_4) [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
                                      w b, b = Subtype.val

                                      A finite-dimensional inner product space admits an orthonormal basis.

                                      @[irreducible]

                                      A finite-dimensional InnerProductSpace has an orthonormal basis.

                                      Instances For
                                        theorem stdOrthonormalBasis_def (𝕜 : Type u_8) [IsROrC 𝕜] (E : Type u_9) [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [FiniteDimensional 𝕜 E] :
                                        stdOrthonormalBasis 𝕜 E = let b := Classical.choose (_ : b, b = Subtype.val); Eq.mpr (_ : OrthonormalBasis (Fin (FiniteDimensional.finrank 𝕜 E)) 𝕜 E = OrthonormalBasis (Fin (Fintype.card { x // x Classical.choose (_ : w b, b = Subtype.val) })) 𝕜 E) (OrthonormalBasis.reindex b (Fintype.equivFinOfCardEq (_ : Fintype.card { x // x Classical.choose (_ : w b, b = Subtype.val) } = Fintype.card { x // x Classical.choose (_ : w b, b = Subtype.val) })))
                                        theorem orthonormalBasis_one_dim {ι : Type u_1} [Fintype ι] (b : OrthonormalBasis ι ) :
                                        (b = fun x => 1) b = fun x => -1

                                        An orthonormal basis of is made either of the vector 1, or of the vector -1.

                                        theorem DirectSum.IsInternal.sigmaOrthonormalBasisIndexEquiv_def {ι : Type u_8} {𝕜 : Type u_9} [IsROrC 𝕜] {E : Type u_10} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [FiniteDimensional 𝕜 E] {n : } (hn : FiniteDimensional.finrank 𝕜 E = n) [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) :
                                        @[irreducible]
                                        def DirectSum.IsInternal.sigmaOrthonormalBasisIndexEquiv {ι : Type u_8} {𝕜 : Type u_9} [IsROrC 𝕜] {E : Type u_10} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [FiniteDimensional 𝕜 E] {n : } (hn : FiniteDimensional.finrank 𝕜 E = n) [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) :
                                        (i : ι) × Fin (FiniteDimensional.finrank 𝕜 { x // x V i }) Fin n

                                        Exhibit a bijection between Fin n and the index set of a certain basis of an n-dimensional inner product space E. This should not be accessed directly, but only via the subsequent API.

                                        Instances For
                                          @[irreducible]
                                          def DirectSum.IsInternal.subordinateOrthonormalBasis {ι : Type u_8} {𝕜 : Type u_9} [IsROrC 𝕜] {E : Type u_10} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [FiniteDimensional 𝕜 E] {n : } (hn : FiniteDimensional.finrank 𝕜 E = n) [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) :

                                          An n-dimensional InnerProductSpace equipped with a decomposition as an internal direct sum has an orthonormal basis indexed by Fin n and subordinate to that direct sum.

                                          Instances For
                                            theorem DirectSum.IsInternal.subordinateOrthonormalBasisIndex_def {ι : Type u_8} {𝕜 : Type u_9} [IsROrC 𝕜] {E : Type u_10} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [FiniteDimensional 𝕜 E] {n : } (hn : FiniteDimensional.finrank 𝕜 E = n) [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (a : Fin n) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) :
                                            @[irreducible]
                                            def DirectSum.IsInternal.subordinateOrthonormalBasisIndex {ι : Type u_8} {𝕜 : Type u_9} [IsROrC 𝕜] {E : Type u_10} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [FiniteDimensional 𝕜 E] {n : } (hn : FiniteDimensional.finrank 𝕜 E = n) [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (a : Fin n) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) :
                                            ι

                                            An n-dimensional InnerProductSpace equipped with a decomposition as an internal direct sum has an orthonormal basis indexed by Fin n and subordinate to that direct sum. This function provides the mapping by which it is subordinate.

                                            Instances For
                                              theorem DirectSum.IsInternal.subordinateOrthonormalBasis_subordinate {ι : Type u_1} {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] [Fintype ι] [FiniteDimensional 𝕜 E] {n : } (hn : FiniteDimensional.finrank 𝕜 E = n) [DecidableEq ι] {V : ιSubmodule 𝕜 E} (hV : DirectSum.IsInternal V) (a : Fin n) (hV' : OrthogonalFamily 𝕜 (fun i => { x // x V i }) fun i => Submodule.subtypeₗᵢ (V i)) :

                                              The basis constructed in DirectSum.IsInternal.subordinateOrthonormalBasis is subordinate to the OrthogonalFamily in question.

                                              def OrthonormalBasis.fromOrthogonalSpanSingleton {𝕜 : Type u_3} [IsROrC 𝕜] {E : Type u_4} [NormedAddCommGroup E] [InnerProductSpace 𝕜 E] (n : ) [Fact (FiniteDimensional.finrank 𝕜 E = n + 1)] {v : E} (hv : v 0) :
                                              OrthonormalBasis (Fin n) 𝕜 { x // x (Submodule.span 𝕜 {v}) }

                                              Given a natural number n one less than the finrank of a finite-dimensional inner product space, there exists an isometry from the orthogonal complement of a nonzero singleton to EuclideanSpace 𝕜 (Fin n).

                                              Instances For
                                                noncomputable def LinearIsometry.extend {𝕜 : Type u_3} [IsROrC 𝕜] {V : Type u_8} [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] {S : Submodule 𝕜 V} (L : { x // x S } →ₗᵢ[𝕜] V) :
                                                V →ₗᵢ[𝕜] V

                                                Let S be a subspace of a finite-dimensional complex inner product space V. A linear isometry mapping S into V can be extended to a full isometry of V.

                                                TODO: The case when S is a finite-dimensional subspace of an infinite-dimensional V.

                                                Instances For
                                                  theorem LinearIsometry.extend_apply {𝕜 : Type u_3} [IsROrC 𝕜] {V : Type u_8} [NormedAddCommGroup V] [InnerProductSpace 𝕜 V] [FiniteDimensional 𝕜 V] {S : Submodule 𝕜 V} (L : { x // x S } →ₗᵢ[𝕜] V) (s : { x // x S }) :
                                                  ↑(LinearIsometry.extend L) s = L s
                                                  def Matrix.toEuclideanLin {𝕜 : Type u_3} [IsROrC 𝕜] {m : Type u_8} {n : Type u_9} [Fintype m] [Fintype n] [DecidableEq n] :
                                                  Matrix m n 𝕜 ≃ₗ[𝕜] EuclideanSpace 𝕜 n →ₗ[𝕜] EuclideanSpace 𝕜 m

                                                  Matrix.toLin' adapted for EuclideanSpace 𝕜 _.

                                                  Instances For
                                                    @[simp]
                                                    theorem Matrix.toEuclideanLin_piLp_equiv_symm {𝕜 : Type u_3} [IsROrC 𝕜] {m : Type u_8} {n : Type u_9} [Fintype m] [Fintype n] [DecidableEq n] (A : Matrix m n 𝕜) (x : n𝕜) :
                                                    ↑(Matrix.toEuclideanLin A) ((WithLp.equiv 2 (n𝕜)).symm x) = (WithLp.equiv 2 ((fun x => m𝕜) x)).symm (↑(Matrix.toLin' A) x)
                                                    @[simp]
                                                    theorem Matrix.piLp_equiv_toEuclideanLin {𝕜 : Type u_3} [IsROrC 𝕜] {m : Type u_8} {n : Type u_9} [Fintype m] [Fintype n] [DecidableEq n] (A : Matrix m n 𝕜) (x : EuclideanSpace 𝕜 n) :
                                                    ↑(WithLp.equiv 2 ((i : m) → (fun x => 𝕜) i)) (↑(Matrix.toEuclideanLin A) x) = ↑(Matrix.toLin' A) (↑(WithLp.equiv 2 ((i : n) → (fun x => 𝕜) i)) x)
                                                    theorem Matrix.toEuclideanLin_eq_toLin {𝕜 : Type u_3} [IsROrC 𝕜] {m : Type u_8} {n : Type u_9} [Fintype m] [Fintype n] [DecidableEq n] :
                                                    Matrix.toEuclideanLin = Matrix.toLin (PiLp.basisFun 2 𝕜 n) (PiLp.basisFun 2 𝕜 m)
                                                    theorem inner_matrix_row_row {𝕜 : Type u_3} [IsROrC 𝕜] {m : Type u_8} {n : Type u_9} [Fintype n] (A : Matrix m n 𝕜) (B : Matrix m n 𝕜) (i : m) (j : m) :
                                                    inner ((WithLp.equiv 2 (n𝕜)).symm (A i)) ((WithLp.equiv 2 (n𝕜)).symm (B j)) = (Matrix m n 𝕜 * Matrix n m 𝕜) (Matrix m m 𝕜) Matrix.instHMulMatrixMatrixMatrix B (Matrix.conjTranspose A) j i

                                                    The inner product of a row of A and a row of B is an entry of B * Aᴴ.

                                                    theorem inner_matrix_col_col {𝕜 : Type u_3} [IsROrC 𝕜] {m : Type u_8} {n : Type u_9} [Fintype m] (A : Matrix m n 𝕜) (B : Matrix m n 𝕜) (i : n) (j : n) :
                                                    inner ((WithLp.equiv 2 (m𝕜)).symm (Matrix.transpose A i)) ((WithLp.equiv 2 (m𝕜)).symm (Matrix.transpose B j)) = (Matrix n m 𝕜 * Matrix m n 𝕜) (Matrix n n 𝕜) Matrix.instHMulMatrixMatrixMatrix (Matrix.conjTranspose A) B i j

                                                    The inner product of a column of A and a column of B is an entry of Aᴴ * B.