Documentation

Mathlib.Analysis.InnerProductSpace.Harmonic.Basic

Harmonic Functions #

This file defines harmonic functions on real, finite-dimensional, inner product spaces E.

Definition #

Let E be a real, finite-dimensional, inner product space and x be a point of E. A function f on E is harmonic at x if it is two times continuously -differentiable and if its Laplacian vanishes in a neighborhood of x.

Equations
Instances For

    Let E be a real, finite-dimensional, inner product space and s be a subset of E. A function f on E is harmonic in a neighborhood of s if it is harmonic at every point of s.

    Equations
    Instances For

      Elementary Properties #

      theorem InnerProductSpace.harmonicAt_congr_nhds {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f₁ f₂ : EF} {x : E} (h : f₁ =ᶠ[nhds x] f₂) :
      HarmonicAt f₁ x HarmonicAt f₂ x

      If two functions agree in a neighborhood of x, then one is harmonic at x iff so is the other.

      If f is harmonic at x, then it is harmonic at all points in a neighborhood of x.

      Harmonicity is an open property.

      theorem InnerProductSpace.HarmonicOnNhd.mono {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f : EF} {s t : Set E} (h : HarmonicOnNhd f s) (hst : t s) :

      If f is harmonic in a neighborhood of s, it is harmonic in a neighborhood of every subset.

      Vector Space Structure #

      theorem InnerProductSpace.HarmonicAt.add {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f₁ f₂ : EF} {x : E} (h₁ : HarmonicAt f₁ x) (h₂ : HarmonicAt f₂ x) :
      HarmonicAt (f₁ + f₂) x

      Sums of harmonic functions are harmonic.

      theorem InnerProductSpace.HarmonicOnNhd.add {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f₁ f₂ : EF} {s : Set E} (h₁ : HarmonicOnNhd f₁ s) (h₂ : HarmonicOnNhd f₂ s) :
      HarmonicOnNhd (f₁ + f₂) s

      Sums of harmonic functions are harmonic.

      theorem InnerProductSpace.HarmonicAt.const_smul {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f : EF} {x : E} {c : } (h : HarmonicAt f x) :
      HarmonicAt (c f) x

      Scalar multiples of harmonic functions are harmonic.

      Scalar multiples of harmonic functions are harmonic.

      Compatibility with Linear Maps #

      theorem InnerProductSpace.HarmonicAt.comp_CLM {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_3} [NormedAddCommGroup G] [NormedSpace G] {f : EF} {x : E} (h : HarmonicAt f x) (l : F →L[] G) :
      HarmonicAt (l f) x

      Compositions of continuous -linear maps with harmonic functions are harmonic.

      Compositions of continuous linear maps with harmonic functions are harmonic.

      Functions are harmonic iff their compositions with continuous linear equivalences are harmonic.

      Functions are harmonic iff their compositions with continuous linear equivalences are harmonic.