Documentation

Mathlib.Analysis.InnerProductSpace.Laplacian

The Laplacian #

This file defines the Laplacian for functions f : E → F on real, finite-dimensional, inner product spaces E. In essence, we define the Laplacian of f as the second derivative, applied to the canonical covariant tensor of E, as defined and discussed in Mathlib.Analysis.InnerProductSpace.CanonicalTensor.

We show that the Laplacian is -linear on continuously differentiable functions, and establish the standard formula for computing the Laplacian in terms of orthonormal bases of E.

Supporting API #

The definition of the Laplacian of a function f : E → F involves the notion of the second derivative, which can be seen as a continuous multilinear map ContinuousMultilinearMap 𝕜 (fun (i : Fin 2) ↦ E) F, a bilinear map E →ₗ[𝕜] E →ₗ[𝕜] F, or a linear map on tensors E ⊗[𝕜] E →ₗ[𝕜] F. This section provides convenience API to convert between these notions.

noncomputable def bilinearIteratedFDerivWithinTwo (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : EF) (s : Set E) :
EE →ₗ[𝕜] E →ₗ[𝕜] F

Convenience reformulation of the second iterated derivative, as a map from E to bilinear maps `E →ₗ[ℝ] E →ₗ[ℝ] ℝ

Equations
Instances For
    noncomputable def bilinearIteratedFDerivTwo (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : EF) :
    EE →ₗ[𝕜] E →ₗ[𝕜] F

    Convenience reformulation of the second iterated derivative, as a map from E to bilinear maps `E →ₗ[ℝ] E →ₗ[ℝ] ℝ

    Equations
    Instances For
      theorem bilinearIteratedFDerivWithinTwo_eq_iteratedFDeriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {e : E} {s : Set E} (f : EF) (hs : UniqueDiffOn 𝕜 s) (he : e s) (e₁ e₂ : E) :
      ((bilinearIteratedFDerivWithinTwo 𝕜 f s e) e₁) e₂ = (iteratedFDerivWithin 𝕜 2 f s e) ![e₁, e₂]

      Expression of bilinearIteratedFDerivWithinTwo in terms of iteratedFDerivWithin.

      theorem bilinearIteratedFDerivTwo_eq_iteratedFDeriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : EF) (e e₁ e₂ : E) :
      ((bilinearIteratedFDerivTwo 𝕜 f e) e₁) e₂ = (iteratedFDeriv 𝕜 2 f e) ![e₁, e₂]

      Expression of bilinearIteratedFDerivTwo in terms of iteratedFDeriv.

      noncomputable def tensorIteratedFDerivWithinTwo (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : EF) (s : Set E) :
      ETensorProduct 𝕜 E E →ₗ[𝕜] F

      Convenience reformulation of the second iterated derivative, as a map from E to linear maps E ⊗[𝕜] E →ₗ[𝕜] F.

      Equations
      Instances For
        noncomputable def tensorIteratedFDerivTwo (𝕜 : Type u_1) [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : EF) :
        ETensorProduct 𝕜 E E →ₗ[𝕜] F

        Convenience reformulation of the second iterated derivative, as a map from E to linear maps E ⊗[𝕜] E →ₗ[𝕜] F.

        Equations
        Instances For
          theorem tensorIteratedFDerivWithinTwo_eq_iteratedFDerivWithin {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] {e : E} {s : Set E} (f : EF) (hs : UniqueDiffOn 𝕜 s) (he : e s) (e₁ e₂ : E) :
          (tensorIteratedFDerivWithinTwo 𝕜 f s e) (e₁ ⊗ₜ[𝕜] e₂) = (iteratedFDerivWithin 𝕜 2 f s e) ![e₁, e₂]

          Expression of tensorIteratedFDerivTwo in terms of iteratedFDerivWithin.

          theorem tensorIteratedFDerivTwo_eq_iteratedFDeriv {𝕜 : Type u_1} [NontriviallyNormedField 𝕜] {E : Type u_2} [NormedAddCommGroup E] [NormedSpace 𝕜 E] {F : Type u_3} [NormedAddCommGroup F] [NormedSpace 𝕜 F] (f : EF) (e e₁ e₂ : E) :
          (tensorIteratedFDerivTwo 𝕜 f e) (e₁ ⊗ₜ[𝕜] e₂) = (iteratedFDeriv 𝕜 2 f e) ![e₁, e₂]

          Expression of tensorIteratedFDerivTwo in terms of iteratedFDeriv.

          Definition of the Laplacian #

          noncomputable def InnerProductSpace.laplacianWithin {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) (s : Set E) :
          EF

          Laplacian for functions on real inner product spaces, with respect to a set s. Use open InnerProductSpace to access the notation Δ[s] for InnerProductSpace.LaplacianWithin.

          Equations
          Instances For

            Laplacian for functions on real inner product spaces, with respect to a set s. Use open InnerProductSpace to access the notation Δ[s] for InnerProductSpace.LaplacianWithin.

            Equations
            • One or more equations did not get rendered due to their size.
            Instances For
              noncomputable def InnerProductSpace.laplacian {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) :
              EF

              Laplacian for functions on real inner product spaces. Use open InnerProductSpace to access the notation Δ for InnerProductSpace.Laplacian.

              Equations
              Instances For

                Laplacian for functions on real inner product spaces. Use open InnerProductSpace to access the notation Δ for InnerProductSpace.Laplacian.

                Equations
                Instances For
                  @[simp]

                  The Laplacian equals the Laplacian with respect to Set.univ.

                  Computation of Δ in Terms of Orthonormal Bases #

                  theorem InnerProductSpace.laplacianWithin_eq_iteratedFDerivWithin_orthonormalBasis {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) {s : Set E} {ι : Type u_4} [Fintype ι] {e : E} (hs : UniqueDiffOn s) (he : e s) (v : OrthonormalBasis ι E) :
                  laplacianWithin f s e = i : ι, (iteratedFDerivWithin 2 f s e) ![v i, v i]

                  Standard formula, computing the Laplacian from any orthonormal basis.

                  theorem InnerProductSpace.laplacian_eq_iteratedFDeriv_orthonormalBasis {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] (f : EF) {ι : Type u_4} [Fintype ι] (v : OrthonormalBasis ι E) :
                  laplacian f = fun (x : E) => i : ι, (iteratedFDeriv 2 f x) ![v i, v i]

                  Standard formula, computing the Laplacian from any orthonormal basis.

                  Standard formula, computing the Laplacian from the standard orthonormal basis of a real inner product space.

                  Standard formula, computing the Laplacian from the standard orthonormal basis of a real inner product space.

                  Special case of the standard formula for functions on , with the standard real inner product structure.

                  Special case of the standard formula for functions on , with the standard real inner product structure.

                  Congruence Lemmata for Δ #

                  If two functions agree in a neighborhood of a point, then so do their Laplacians.

                  theorem InnerProductSpace.laplacian_congr_nhds {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f₁ f₂ : EF} {x : E} (h : f₁ =ᶠ[nhds x] f₂) :

                  If two functions agree in a neighborhood of a point, then so do their Laplacians.

                  ℝ-Linearity of Δ on Continuously Differentiable Functions #

                  theorem ContDiffWithinAt.laplacianWithin_add {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f₁ f₂ : EF} {x : E} {s : Set E} (h₁ : ContDiffWithinAt 2 f₁ s x) (h₂ : ContDiffWithinAt 2 f₂ s x) (hs : UniqueDiffOn s) (hx : x s) :

                  The Laplacian commutes with addition.

                  theorem ContDiffAt.laplacian_add {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f₁ f₂ : EF} {x : E} (h₁ : ContDiffAt 2 f₁ x) (h₂ : ContDiffAt 2 f₂ x) :

                  The Laplacian commutes with addition.

                  The Laplacian commutes with addition.

                  The Laplacian commutes with addition.

                  theorem InnerProductSpace.laplacianWithin_smul {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f : EF} {x : E} {s : Set E} (v : ) (hf : ContDiffWithinAt 2 f s x) (hs : UniqueDiffOn s) (hx : x s) :

                  The Laplacian commutes with scalar multiplication.

                  theorem InnerProductSpace.laplacian_smul {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {f : EF} {x : E} (v : ) (hf : ContDiffAt 2 f x) :
                  laplacian (v f) x = v laplacian f x

                  The Laplacian commutes with scalar multiplication.

                  The Laplacian commutes with scalar multiplication.

                  The Laplacian commutes with scalar multiplication.

                  Commutativity of Δ with Linear Operators #

                  This section establishes commutativity with linear operators, showing in particular that Δ commutes with taking real and imaginary parts of complex-valued functions.

                  The Laplacian commutes with left composition by continuous linear maps.

                  The Laplacian commutes with left composition by continuous linear maps.

                  The Laplacian commutes with left composition by continuous linear maps.

                  The Laplacian commutes with left composition by continuous linear maps.

                  theorem InnerProductSpace.laplacianWithin_CLE_comp_left {E : Type u_1} [NormedAddCommGroup E] [InnerProductSpace E] [FiniteDimensional E] {F : Type u_2} [NormedAddCommGroup F] [NormedSpace F] {G : Type u_3} [NormedAddCommGroup G] [NormedSpace G] {f : EF} {x : E} {s : Set E} {l : F ≃L[] G} (hs : UniqueDiffOn s) (hx : x s) :
                  laplacianWithin (l f) s x = (l laplacianWithin f s) x

                  The Laplacian commutes with left composition by continuous linear equivalences.

                  The Laplacian commutes with left composition by continuous linear equivalences.