Torsors of normed space actions. #
This file contains lemmas about normed additive torsors over normed spaces.
theorem
AffineSubspace.isClosed_direction_iff
{W : Type u_3}
{Q : Type u_4}
[NormedAddCommGroup W]
[MetricSpace Q]
[NormedAddTorsor W Q]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ W]
(s : AffineSubspace ๐ Q)
:
@[simp]
theorem
dist_center_homothety
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_center_homothety
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_homothety_center
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_homothety_center
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_lineMap_lineMap
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(cโ cโ : ๐)
:
dist ((AffineMap.lineMap pโ pโ) cโ) ((AffineMap.lineMap pโ pโ) cโ) = dist cโ cโ * dist pโ pโ
@[simp]
theorem
nndist_lineMap_lineMap
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(cโ cโ : ๐)
:
nndist ((AffineMap.lineMap pโ pโ) cโ) ((AffineMap.lineMap pโ pโ) cโ) = nndist cโ cโ * nndist pโ pโ
theorem
lipschitzWith_lineMap
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
:
LipschitzWith (nndist pโ pโ) โ(AffineMap.lineMap pโ pโ)
@[simp]
theorem
dist_lineMap_left
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_lineMap_left
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_left_lineMap
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_left_lineMap
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_lineMap_right
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_lineMap_right
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_right_lineMap
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_right_lineMap
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_homothety_self
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_homothety_self
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_self_homothety
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
nndist_self_homothety
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
(pโ pโ : P)
(c : ๐)
:
@[simp]
theorem
dist_left_midpoint
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
@[simp]
theorem
nndist_left_midpoint
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
@[simp]
theorem
dist_midpoint_left
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
@[simp]
theorem
nndist_midpoint_left
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
@[simp]
theorem
dist_midpoint_right
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
@[simp]
theorem
nndist_midpoint_right
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
@[simp]
theorem
dist_right_midpoint
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
@[simp]
theorem
nndist_right_midpoint
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ : P)
:
theorem
dist_midpoint_midpoint_le'
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ pโ pโ : P)
:
theorem
nndist_midpoint_midpoint_le'
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ V]
[Invertible 2]
(pโ pโ pโ pโ : P)
:
@[simp]
theorem
dist_pointReflection_left
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(p q : P)
:
dist ((Equiv.pointReflection p) q) p = dist p q
@[simp]
theorem
dist_left_pointReflection
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(p q : P)
:
dist p ((Equiv.pointReflection p) q) = dist p q
theorem
dist_pointReflection_right
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(๐ : Type u_5)
[NormedField ๐]
[NormedSpace ๐ V]
(p q : P)
:
theorem
dist_right_pointReflection
{V : Type u_1}
{P : Type u_2}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
(๐ : Type u_5)
[NormedField ๐]
[NormedSpace ๐ V]
(p q : P)
:
theorem
antilipschitzWith_lineMap
{W : Type u_3}
{Q : Type u_4}
[NormedAddCommGroup W]
[MetricSpace Q]
[NormedAddTorsor W Q]
{๐ : Type u_5}
[NormedField ๐]
[NormedSpace ๐ W]
{pโ pโ : Q}
(h : pโ โ pโ)
:
AntilipschitzWith (nndist pโ pโ)โปยน โ(AffineMap.lineMap pโ pโ)
theorem
eventually_homothety_mem_of_mem_interior
{W : Type u_3}
{Q : Type u_4}
[NormedAddCommGroup W]
[MetricSpace Q]
[NormedAddTorsor W Q]
(๐ : Type u_5)
[NormedField ๐]
[NormedSpace ๐ W]
(x : Q)
{s : Set Q}
{y : Q}
(hy : y โ interior s)
:
โแถ (ฮด : ๐) in nhds 1, (AffineMap.homothety x ฮด) y โ s
theorem
eventually_homothety_image_subset_of_finite_subset_interior
{W : Type u_3}
{Q : Type u_4}
[NormedAddCommGroup W]
[MetricSpace Q]
[NormedAddTorsor W Q]
(๐ : Type u_5)
[NormedField ๐]
[NormedSpace ๐ W]
(x : Q)
{s t : Set Q}
(ht : t.Finite)
(h : t โ interior s)
:
โแถ (ฮด : ๐) in nhds 1, โ(AffineMap.homothety x ฮด) '' t โ s
def
AffineMap.ofMapMidpoint
{V : Type u_1}
{P : Type u_2}
{W : Type u_3}
{Q : Type u_4}
[SeminormedAddCommGroup V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
[NormedAddCommGroup W]
[MetricSpace Q]
[NormedAddTorsor W Q]
[NormedSpace โ V]
[NormedSpace โ W]
(f : P โ Q)
(h : โ (x y : P), f (midpoint โ x y) = midpoint โ (f x) (f y))
(hfc : Continuous f)
:
A continuous map between two normed affine spaces is an affine map provided that it sends midpoints to midpoints.
Equations
- One or more equations did not get rendered due to their size.
Instances For
def
DilationEquiv.smulTorsor
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
{P : Type u_3}
[PseudoMetricSpace P]
[NormedAddTorsor E P]
(c : P)
{k : ๐}
(hk : k โ 0)
:
E โแต P
Scaling by an element k
of the scalar ring as a DilationEquiv
with ratio โkโโ
, mapping
from a normed space to a normed torsor over that space sending 0
to c
.
Equations
Instances For
@[simp]
theorem
DilationEquiv.smulTorsor_symm_apply
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
{P : Type u_3}
[PseudoMetricSpace P]
[NormedAddTorsor E P]
(c : P)
{k : ๐}
(hk : k โ 0)
(xโ : P)
:
(DilationEquiv.smulTorsor c hk).symm xโ = (kโปยน โข fun (x : P) => x -แตฅ c) xโ
@[simp]
theorem
DilationEquiv.smulTorsor_apply
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
{P : Type u_3}
[PseudoMetricSpace P]
[NormedAddTorsor E P]
(c : P)
{k : ๐}
(hk : k โ 0)
(xโ : E)
:
(DilationEquiv.smulTorsor c hk) xโ = k โข xโ +แตฅ c
@[simp]
theorem
DilationEquiv.smulTorsor_ratio
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
{P : Type u_3}
[PseudoMetricSpace P]
[NormedAddTorsor E P]
{c : P}
{k : ๐}
(hk : k โ 0)
{x y : E}
(h : dist x y โ 0)
:
@[simp]
theorem
DilationEquiv.smulTorsor_preimage_ball
{๐ : Type u_1}
{E : Type u_2}
[NormedDivisionRing ๐]
[SeminormedAddCommGroup E]
[Module ๐ E]
[BoundedSMul ๐ E]
{P : Type u_3}
[PseudoMetricSpace P]
[NormedAddTorsor E P]
{c : P}
{k : ๐}
(hk : k โ 0)
:
โ(DilationEquiv.smulTorsor c hk) โปยน' Metric.ball c โkโ = Metric.ball 0 1