Asymptotic cones in normed spaces #
In this file, we prove that the asymptotic cone of a set is non-trivial if and only if the set is unbounded.
theorem
AffineSpace.asymptoticNhds_le_cobounded
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{v : V}
(hv : v ≠ 0)
:
theorem
asymptoticCone_subset_singleton_of_bounded
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
{s : Set P}
(hs : Bornology.IsBounded s)
:
theorem
AffineSpace.cobounded_eq_iSup_sphere_asymptoticNhds
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
[FiniteDimensional ℝ V]
:
theorem
isBounded_iff_asymptoticCone_subset_singleton
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
[FiniteDimensional ℝ V]
{s : Set P}
:
In a finite dimensional normed affine space over ℝ
, a set is bounded if and only if its
asymptotic cone is trivial.
theorem
not_bounded_iff_exists_ne_zero_mem_asymptoticCone
{V : Type u_1}
{P : Type u_2}
[NormedAddCommGroup V]
[NormedSpace ℝ V]
[MetricSpace P]
[NormedAddTorsor V P]
[FiniteDimensional ℝ V]
{s : Set P}
:
In a finite dimensional normed affine space over ℝ
, a set is unbounded if and only if its
asymptotic cone contains a nonzero vector.