Documentation

Mathlib.Topology.Algebra.AsymptoticCone

Asymptotic cone of a set #

This file defines the asymptotic cone of a set in a topological affine space.

Implementation details #

The asymptotic cone of a set $A$ is usually defined as the set of points $v$ for which there exist sequences $t_n > 0$ and $x_n \in A$ such that $t_n \to 0$ and $t_n x_n \to v$. We take a different approach here using filters: we define the asymptotic cone of s as the set of vectors v such that ∃ᶠ p in Filter.atTop • š“ v, p ∈ s holds.

Main definitions #

Main statements #

@[irreducible]
def AffineSpace.asymptoticNhds (k : Type u_1) {V : Type u_2} (P : Type u_3) [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] (v : V) :

In a topological affine space P over k, AffineSpace.asymptoticNhds k P v is the filter of neighborhoods at infinity in directions near v. In a topological vector space, this is the filter Filter.atTop • š“ v. To support affine spaces, the actual definition is different and should be considered an implementation detail. Use AffineSpace.asymptoticNhds_eq_smul or AffineSpace.asymptoticNhds_eq_smul_vadd for unfolding.

Equations
Instances For
    theorem AffineSpace.asymptoticNhds_vadd_pure {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] (v : V) (p : P) :
    theorem AffineSpace.vadd_asymptoticNhds {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] (u v : V) :
    theorem Filter.Tendsto.asymptoticNhds_vadd_const {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {α : Type u_4} {l : Filter α} {f : α → V} {v : V} (p : P) (hf : Tendsto f l (AffineSpace.asymptoticNhds k V v)) :
    Tendsto (fun (x : α) => f x +ᵄ p) l (AffineSpace.asymptoticNhds k P v)
    theorem Filter.Tendsto.const_vadd_asymptoticNhds {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {α : Type u_4} {l : Filter α} {f : α → P} {v : V} (u : V) (hf : Tendsto f l (AffineSpace.asymptoticNhds k P v)) :
    Tendsto (fun (x : α) => u +ᵄ f x) l (AffineSpace.asymptoticNhds k P v)
    theorem Filter.Tendsto.atTop_smul_nhds_tendsto_asymptoticNhds {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [TopologicalSpace V] {α : Type u_4} {l : Filter α} [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {f : α → k} {g : α → V} {v : V} (hf : Tendsto f l atTop) (hg : Tendsto g l (nhds v)) :
    Tendsto (fun (x : α) => f x • g x) l (AffineSpace.asymptoticNhds k V v)
    theorem Filter.Tendsto.atTop_smul_const_tendsto_asymptoticNhds {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [TopologicalSpace V] {α : Type u_4} {l : Filter α} [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {f : α → k} (v : V) (hf : Tendsto f l atTop) :
    Tendsto (fun (x : α) => f x • v) l (AffineSpace.asymptoticNhds k V v)
    def asymptoticCone (k : Type u_1) {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] (s : Set P) :
    Set V

    The set of directions v for which the set has points arbitrarily far in directions near v.

    Equations
    Instances For
      theorem mem_asymptoticCone_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {v : V} {s : Set P} :
      @[simp]
      theorem asymptoticCone_empty {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] :
      theorem asymptoticCone_mono {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {s t : Set P} (h : s āŠ† t) :
      theorem asymptoticCone_union {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {s t : Set P} :
      theorem asymptoticCone_biUnion {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ι : Type u_4} {s : Set ι} (hs : s.Finite) (f : ι → Set P) :
      asymptoticCone k (ā‹ƒ i ∈ s, f i) = ā‹ƒ i ∈ s, asymptoticCone k (f i)
      theorem asymptoticCone_sUnion {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {S : Set (Set P)} (hS : S.Finite) :
      asymptoticCone k (ā‹ƒā‚€ S) = ā‹ƒ s ∈ S, asymptoticCone k s
      theorem Finset.asymptoticCone_biUnion {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ι : Type u_4} (s : Finset ι) (f : ι → Set P) :
      asymptoticCone k (ā‹ƒ i ∈ s, f i) = ā‹ƒ i ∈ s, asymptoticCone k (f i)
      theorem asymptoticCone_iUnion_of_finite {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] {ι : Type u_4} [Finite ι] (f : ι → Set P) :
      asymptoticCone k (ā‹ƒ (i : ι), f i) = ā‹ƒ (i : ι), asymptoticCone k (f i)
      @[simp]
      theorem smul_mem_asymptoticCone_iff {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set P} {c : k} {v : V} (hc : 0 < c) :
      theorem smul_mem_asymptoticCone {k : Type u_1} {V : Type u_2} {P : Type u_3} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [AddTorsor V P] [TopologicalSpace V] [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set P} {c : k} {v : V} (hc : 0 ≤ c) (h : v ∈ asymptoticCone k s) :
      theorem asymptoticCone_eq_closure_of_forall_smul_mem {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [AddCommGroup V] [Module k V] [TopologicalSpace V] [TopologicalSpace k] [OrderTopology k] [IsStrictOrderedRing k] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set V} (hs : āˆ€ (c : k), 0 < c → āˆ€ x ∈ s, c • x ∈ s) :
      theorem StarConvex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [IsStrictOrderedRing k] [TopologicalSpace k] [OrderTopology k] [AddCommGroup V] [Module k V] [TopologicalSpace V] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set V} {c : k} {v p : V} (hs₁ : StarConvex k p s) (hsā‚‚ : IsClosed s) (hc : 0 ≤ c) (hv : v ∈ asymptoticCone k s) :

      If a closed set s is star-convex at p and v is in the asymptotic cone of s, then the ray of direction v starting from p is contained in s.

      theorem Convex.smul_vadd_mem_of_isClosed_of_mem_asymptoticCone {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [IsStrictOrderedRing k] [TopologicalSpace k] [OrderTopology k] [AddCommGroup V] [Module k V] [TopologicalSpace V] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set V} {c : k} {v p : V} (hs₁ : Convex k s) (hsā‚‚ : IsClosed s) (hc : 0 ≤ c) (hv : v ∈ asymptoticCone k s) (hp : p ∈ s) :

      If v is in the asymptotic cone of a closed convex set s, then for every p ∈ s, the ray of direction v starting from p is contained in s.

      theorem Convex.smul_vadd_mem_of_mem_nhds_of_mem_asymptoticCone {k : Type u_1} {V : Type u_2} [Field k] [LinearOrder k] [IsStrictOrderedRing k] [TopologicalSpace k] [OrderTopology k] [AddCommGroup V] [Module k V] [TopologicalSpace V] [IsTopologicalAddGroup V] [ContinuousSMul k V] {s : Set V} {c : k} {v p : V} (hs : Convex k s) (hc : 0 ≤ c) (hp : s ∈ nhds p) (hv : v ∈ asymptoticCone k s) :

      If v is in the asymptotic cone of a convex set s, then for every interior point p, the ray of direction v starting from p is contained in s.