Topological torsors of additive groups #
This file defines topological torsors of additive groups, that is, torsors where +ᵥ
and -ᵥ
are
continuous.
class
IsTopologicalAddTorsor
{V : Type u_1}
(P : Type u_2)
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
extends ContinuousVAdd V P :
A topological torsor over a topological additive group is a torsor where +ᵥ
and -ᵥ
are
continuous.
- continuous_vadd : Continuous fun (p : V × P) => p.1 +ᵥ p.2
- continuous_vsub : Continuous fun (x : P × P) => x.1 -ᵥ x.2
Instances
theorem
Filter.Tendsto.vsub
{V : Type u_1}
{P : Type u_2}
{α : Type u_3}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
{l : Filter α}
{f g : α → P}
{x y : P}
(hf : Tendsto f l (nhds x))
(hg : Tendsto g l (nhds y))
:
theorem
Continuous.vsub
{V : Type u_1}
{P : Type u_2}
{α : Type u_3}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
[TopologicalSpace α]
{f g : α → P}
(hf : Continuous f)
(hg : Continuous g)
:
Continuous fun (x : α) => f x -ᵥ g x
theorem
ContinuousAt.vsub
{V : Type u_1}
{P : Type u_2}
{α : Type u_3}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
[TopologicalSpace α]
{f g : α → P}
{x : α}
(hf : ContinuousAt f x)
(hg : ContinuousAt g x)
:
ContinuousAt (fun (x : α) => f x -ᵥ g x) x
theorem
ContinuousWithinAt.vsub
{V : Type u_1}
{P : Type u_2}
{α : Type u_3}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
[TopologicalSpace α]
{f g : α → P}
{x : α}
{s : Set α}
(hf : ContinuousWithinAt f s x)
(hg : ContinuousWithinAt g s x)
:
ContinuousWithinAt (fun (x : α) => f x -ᵥ g x) s x
theorem
ContinuousOn.vsub
{V : Type u_1}
{P : Type u_2}
{α : Type u_3}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
[TopologicalSpace α]
{f g : α → P}
{s : Set α}
(hf : ContinuousOn f s)
(hg : ContinuousOn g s)
:
ContinuousOn (fun (x : α) => f x -ᵥ g x) s
theorem
IsTopologicalAddTorsor.to_isTopologicalAddGroup
(V : Type u_1)
(P : Type u_2)
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
:
The underlying group of a topological torsor is a topological group. This is not an instance, as
P
cannot be inferred.
def
Homeomorph.vaddConst
{V : Type u_1}
{P : Type u_2}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
(p : P)
:
The map v ↦ v +ᵥ p
as a homeomorphism between V
and P
.
Equations
- Homeomorph.vaddConst p = { toEquiv := Equiv.vaddConst p, continuous_toFun := ⋯, continuous_invFun := ⋯ }
Instances For
@[simp]
theorem
Homeomorph.vaddConst_symm_apply
{V : Type u_1}
{P : Type u_2}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
(p p' : P)
:
@[simp]
theorem
Homeomorph.vaddConst_apply
{V : Type u_1}
{P : Type u_2}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
(p : P)
(v : V)
:
theorem
IsClosed.vadd_right_of_isCompact
{V : Type u_1}
{P : Type u_2}
[AddGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
{s : Set V}
{t : Set P}
(hs : IsClosed s)
(ht : IsCompact t)
:
instance
instIsTopologicalAddTorsor
{G : Type u_1}
[AddGroup G]
[TopologicalSpace G]
[IsTopologicalAddGroup G]
:
instance
instIsTopologicalAddTorsorProd
{V : Type u_1}
{W : Type u_2}
{P : Type u_3}
{Q : Type u_4}
[AddCommGroup V]
[TopologicalSpace V]
[AddTorsor V P]
[TopologicalSpace P]
[IsTopologicalAddTorsor P]
[AddCommGroup W]
[TopologicalSpace W]
[AddTorsor W Q]
[TopologicalSpace Q]
[IsTopologicalAddTorsor Q]
:
IsTopologicalAddTorsor (P × Q)
instance
instIsTopologicalAddTorsorForall
{ι : Type u_1}
{V : ι → Type u_2}
{P : ι → Type u_3}
[(i : ι) → AddCommGroup (V i)]
[(i : ι) → TopologicalSpace (V i)]
[(i : ι) → AddTorsor (V i) (P i)]
[(i : ι) → TopologicalSpace (P i)]
[∀ (i : ι), IsTopologicalAddTorsor (P i)]
:
IsTopologicalAddTorsor ((i : ι) → P i)