Documentation

Mathlib.Topology.Algebra.Group.AddTorsor

Topological torsors of additive groups #

This file defines topological torsors of additive groups, that is, torsors where +ᵥ and -ᵥ are continuous.

class IsTopologicalAddTorsor {V : Type u_1} (P : Type u_2) [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] extends ContinuousVAdd V P :

A topological torsor over a topological additive group is a torsor where +ᵥ and -ᵥ are continuous.

Instances
    theorem Filter.Tendsto.vsub {V : Type u_1} {P : Type u_2} {α : Type u_3} [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] {l : Filter α} {f g : αP} {x y : P} (hf : Tendsto f l (nhds x)) (hg : Tendsto g l (nhds y)) :
    Tendsto (f -ᵥ g) l (nhds (x -ᵥ y))
    theorem Continuous.vsub {V : Type u_1} {P : Type u_2} {α : Type u_3} [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [TopologicalSpace α] {f g : αP} (hf : Continuous f) (hg : Continuous g) :
    Continuous fun (x : α) => f x -ᵥ g x
    theorem ContinuousAt.vsub {V : Type u_1} {P : Type u_2} {α : Type u_3} [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [TopologicalSpace α] {f g : αP} {x : α} (hf : ContinuousAt f x) (hg : ContinuousAt g x) :
    ContinuousAt (fun (x : α) => f x -ᵥ g x) x
    theorem ContinuousWithinAt.vsub {V : Type u_1} {P : Type u_2} {α : Type u_3} [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [TopologicalSpace α] {f g : αP} {x : α} {s : Set α} (hf : ContinuousWithinAt f s x) (hg : ContinuousWithinAt g s x) :
    ContinuousWithinAt (fun (x : α) => f x -ᵥ g x) s x
    theorem ContinuousOn.vsub {V : Type u_1} {P : Type u_2} {α : Type u_3} [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] [TopologicalSpace α] {f g : αP} {s : Set α} (hf : ContinuousOn f s) (hg : ContinuousOn g s) :
    ContinuousOn (fun (x : α) => f x -ᵥ g x) s

    The underlying group of a topological torsor is a topological group. This is not an instance, as P cannot be inferred.

    The map v ↦ v +ᵥ p as a homeomorphism between V and P.

    Equations
    Instances For
      @[simp]
      @[simp]
      theorem Homeomorph.vaddConst_apply {V : Type u_1} {P : Type u_2} [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] (p : P) (v : V) :
      (vaddConst p) v = v +ᵥ p
      theorem IsClosed.vadd_right_of_isCompact {V : Type u_1} {P : Type u_2} [AddGroup V] [TopologicalSpace V] [AddTorsor V P] [TopologicalSpace P] [IsTopologicalAddTorsor P] {s : Set V} {t : Set P} (hs : IsClosed s) (ht : IsCompact t) :
      instance instIsTopologicalAddTorsorForall {ι : Type u_1} {V : ιType u_2} {P : ιType u_3} [(i : ι) → AddCommGroup (V i)] [(i : ι) → TopologicalSpace (V i)] [(i : ι) → AddTorsor (V i) (P i)] [(i : ι) → TopologicalSpace (P i)] [∀ (i : ι), IsTopologicalAddTorsor (P i)] :
      IsTopologicalAddTorsor ((i : ι) → P i)