Ceva's theorem. #
This file proves various versions of Ceva's theorem in a NormedAddTorsor.
References #
- https://en.wikipedia.org/wiki/Ceva%27s_theorem
theorem
Affine.Triangle.prod_dist_eq_prod_dist_of_mem_line_of_mem_line
{𝕜 : Type u_1}
{V : Type u_2}
{P : Type u_3}
[SeminormedAddCommGroup V]
[NormedField 𝕜]
[NormedSpace 𝕜 V]
[PseudoMetricSpace P]
[NormedAddTorsor V P]
{t : Triangle 𝕜 P}
{p : Fin 3 → P}
{p' : P}
(hp : ∀ (i : Fin 3), p i ∈ affineSpan 𝕜 {t.points (i + 1), t.points (i + 2)})
(hp' : ∀ (i : Fin 3), p' ∈ affineSpan 𝕜 {t.points i, p i})
:
Ceva's theorem for a triangle, expressed in terms of multiplying distances.
theorem
Affine.Triangle.prod_dist_div_dist_eq_one_of_mem_line_of_mem_line
{𝕜 : Type u_1}
{V : Type u_2}
{P : Type u_3}
[SeminormedAddCommGroup V]
[NormedField 𝕜]
[NormedSpace 𝕜 V]
[MetricSpace P]
[NormedAddTorsor V P]
{t : Triangle 𝕜 P}
{p : Fin 3 → P}
{p' : P}
(hp0 : ∀ (i : Fin 3), p i ≠ t.points (i + 2))
(hp : ∀ (i : Fin 3), p i ∈ affineSpan 𝕜 {t.points (i + 1), t.points (i + 2)})
(hp' : ∀ (i : Fin 3), p' ∈ affineSpan 𝕜 {t.points i, p i})
:
Ceva's theorem for a triangle, expressed using division of distances.