Documentation

Mathlib.Analysis.Normed.Algebra.Norm

Algebra norms #

We define algebra norms and multiplicative algebra norms.

Main Definitions #

Tags #

norm, algebra norm

structure AlgebraNorm (R : Type u_1) [SeminormedCommRing R] (S : Type u_2) [Ring S] [Algebra R S] extends RingNorm S, Seminorm R S :
Type u_2

An algebra norm on an R-algebra S is a ring norm on S compatible with the action of R.

Instances For
    Equations
    • instInhabitedAlgebraNorm K = { default := { toFun := norm, map_zero' := , add_le' := , neg' := , mul_le' := , eq_zero_of_map_eq_zero' := , smul' := } }
    class AlgebraNormClass (F : Type u_1) (R : outParam (Type u_2)) [SeminormedCommRing R] (S : outParam (Type u_3)) [Ring S] [Algebra R S] [FunLike F S ] extends RingNormClass F S , SeminormClass F R S :

    AlgebraNormClass F R S states that F is a type of R-algebra norms on the ring S. You should extend this class when you extend AlgebraNorm.

    Instances
      def AlgebraNorm.toRingSeminorm' {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] (f : AlgebraNorm R S) :

      The ring seminorm underlying an algebra norm.

      Equations
      • f.toRingSeminorm' = f.toRingSeminorm
      Instances For
        instance AlgebraNorm.instFunLikeReal {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] :
        Equations
        • AlgebraNorm.instFunLikeReal = { coe := fun (f : AlgebraNorm R S) => f.toFun, coe_injective' := }
        theorem AlgebraNorm.toFun_eq_coe {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] (p : AlgebraNorm R S) :
        p.toFun = p
        theorem AlgebraNorm.ext {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {p q : AlgebraNorm R S} :
        (∀ (x : S), p x = q x)p = q
        theorem AlgebraNorm.extends_norm' {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {f : AlgebraNorm R S} (hf1 : f 1 = 1) (a : R) :
        f (a 1) = a

        An R-algebra norm such that f 1 = 1 extends the norm on R.

        theorem AlgebraNorm.extends_norm {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {f : AlgebraNorm R S} (hf1 : f 1 = 1) (a : R) :
        f ((algebraMap R S) a) = a

        An R-algebra norm such that f 1 = 1 extends the norm on R.

        def AlgebraNorm.restriction {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] (A : Subalgebra R S) (f : AlgebraNorm R S) :

        The restriction of an algebra norm to a subalgebra.

        Equations
        • AlgebraNorm.restriction A f = { toFun := fun (x : A) => f x, map_zero' := , add_le' := , neg' := , mul_le' := , eq_zero_of_map_eq_zero' := , smul' := }
        Instances For
          def AlgebraNorm.isScalarTower_restriction {R : Type u_1} [SeminormedCommRing R] {S : Type u_2} [Ring S] [Algebra R S] {A : Type u_3} [CommRing A] [Algebra R A] [Algebra A S] [IsScalarTower R A S] (hinj : Function.Injective (algebraMap A S)) (f : AlgebraNorm R S) :

          The restriction of an algebra norm in a scalar tower.

          Equations
          • One or more equations did not get rendered due to their size.
          Instances For
            structure MulAlgebraNorm (R : Type u_1) [SeminormedCommRing R] (S : Type u_2) [Ring S] [Algebra R S] extends MulRingNorm S, Seminorm R S :
            Type u_2

            A multiplicative algebra norm on an R-algebra norm S is a multiplicative ring norm on S compatible with the action of R.

            Instances For
              Equations
              • instInhabitedMulAlgebraNorm K = { default := { toFun := norm, map_zero' := , add_le' := , neg' := , map_one' := , map_mul' := , eq_zero_of_map_eq_zero' := , smul' := } }
              class MulAlgebraNormClass (F : Type u_1) (R : outParam (Type u_2)) [SeminormedCommRing R] (S : outParam (Type u_3)) [Ring S] [Algebra R S] [FunLike F S ] extends MulRingNormClass F S , SeminormClass F R S :

              MulAlgebraNormClass F R S states that F is a type of multiplicative R-algebra norms on the ring S. You should extend this class when you extend MulAlgebraNorm.

              Instances
                Equations
                • MulAlgebraNorm.instFunLikeReal = { coe := fun (f : MulAlgebraNorm R S) => f.toFun, coe_injective' := }
                theorem MulAlgebraNorm.toFun_eq_coe {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] (p : MulAlgebraNorm R S) :
                p.toFun = p
                theorem MulAlgebraNorm.ext {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] {p q : MulAlgebraNorm R S} :
                (∀ (x : S), p x = q x)p = q
                theorem MulAlgebraNorm.extends_norm' {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] (f : MulAlgebraNorm R S) (a : R) :
                f (a 1) = a

                A multiplicative R-algebra norm extends the norm on R.

                theorem MulAlgebraNorm.extends_norm {R : outParam (Type u_1)} {S : outParam (Type u_2)} [SeminormedCommRing R] [Ring S] [Algebra R S] (f : MulAlgebraNorm R S) (a : R) :
                f ((algebraMap R S) a) = a

                A multiplicative R-algebra norm extends the norm on R.

                The ring norm underlying a multiplicative ring norm.

                Equations
                • f.toRingNorm = { toFun := f, map_zero' := , add_le' := , neg' := , mul_le' := , eq_zero_of_map_eq_zero' := }
                Instances For
                  theorem MulRingNorm.isPowMul {A : Type u_2} [Ring A] (f : MulRingNorm A) :

                  A multiplicative ring norm is power-multiplicative.